H=OIEFEHRAT—IL

Pseudorandomness
and
Derandomization

Shuichi Hirahara

(National Institute of Informatics)

NI

Inter-University Research Institute Corporation /
Research Organization of Information and Systems

National Institute of Informatics

2020F6H308 (XN)

Randomized algorithms

»Randomized algorithms are useful and fast, but...

»How can we implement randomized algorithms?

* srand(time(NULL)); rand(); rand(); ...
* Use noise, the motion of mouse pointers, radioactive rays (E&Eﬂllﬁ)

»Two approaches: Randomness extractor and derandomization.

Two approaches

1. Randomness extractor

* enables us to extract (almost) uniform bits from sources.
(“sufficiently random”: min-entropy is large)

* Example: extracts uniform bits from the motion of a mouse pointer.

2. Derandomization

* The set of techniques that reduces the amount of random bits used by an
efficient randomized algorithm to (ideally) O (logn) bits.

* 0O(logn) random bits can be simulated in polynomial time.

BPP: Bounded-error Probabilistic Polynomial-time

> f:{0,1}* - {0,1}, a decision problem.

» A:atwo-sided-error polynomial-time randomized algorithm for solving f.

For some polynomial p, for all n € N, for any input x € {0,1}", the following holds:

P [AGGT) = F0)] 22
TN{O,]Sp(n) 1) = f(x) — 4 X:an input

r: random bits

» BPP is the class of decision problems f that can be solved by
some two-sided-error polynomial-time randomized algorithm.

Hardness versus Randomness framework

»[Yao ’82], [Blum & Micali ‘84], [Nisan & Wigderson '94], ...

»If there is a circuit lower bound for explicit functions,
then randomized algorithms can be derandomized.

Theorem [Impagliazzo & Wigderson 1997]

If E € io-SIZE(2€") for some constant € > 0,
then P = BPP.

» An explicit function: computable by a Turing machine in time 20(n)

Complexity classes

» E & i0-SIZE(2¢™) means:

There is a function f: {0,1}* — {0,1} such that
1. fis computable in time 2™, and
, [n cannot be computed by a circuit of size
fn:10,1}* — {0,1}, the restriction of f to n-bit inputs.
> E = DTIME(2°™)

> SIZE(S(n)) is the class of the functions f: {0,1}* — {0,1} such that f,, is
computable by a circuit of size s(n) for all large n.

» 10-C = {flag € 613 ’ fn — gn}

2¢M,

» Itis an open question to prove E & SIZE(6n). But
believed to be E & io-SIZE(2¢™).

Hardness versus Randomness

Theorem [Impagliazzo & Wigderson 1997]

E ¢ io-SIZE(2¢") = P = BPP.

» The hypothesis: Cannot compute some explicit function. (Hardness)

» The conclusion: Can simulate BPP in deterministic polynomial time.

Impossibility = Possibility

Hardness versus Randomness

Theorem [Impagliazzo & Wigderson 1997]

E ¢ io-SIZE(2¢") = P = BPP.

» The hypothesis: Cannot compute some explicit function. (Hardness)

» The conclusion: Can compute a “pseudorandom generator”
that cannot be distinguished by any efficient algorithm.

Impossibility = Possibility

Outline

1. The notion of pseudorandom generator

2. Constructions of pseudorandom generators

Is rand() a good pseudorandom sequence?

> Let’s try to implement a randomized algorithm A(x; r).
* How should we deal with random bits r?

1o ‘= srand(time(NULL))
7"1 = rand() int rand () {
Ty = rand() rand_next = rand_next * 1103515245 + 12345;

return rand_next & Ox7fffffff;
73 = rand() }

An implementation of rand()

» rand() is a linear congruential generator.

Is rand() a good pseudorandom sequence?

> Let’s try to implement a randomized algorithm A(x; r).
* How should we deal with random bits r?

r() = Seed An implementation of rand()
r; = (1103515245 x 7y + 12345) mod 23* I
Ty = (1103515245 X (&} + 12345) mod 231 rand_next = rand_next * 1103515245 + 12345;

return rand_next & Ox7fffffff;

r3 == (1103515245 X r; + 12345) mod 231 }

» rand() is a linear congruential generator.

Simulating a randomized algorithm A(x; 1)

» G:{0,1}° - {0,1}™ be the function that takes a seed z and
outputs the sequence generated by rand().

G(z) = zry1y13 ..., where 1;,; = (ar; + ¢) mod 231, r, = z,
a = 1103515245,
c = 12345.

> |s it possible to simulate A(x;) in the following sense?

Vx, Pr_ [A(x;r) =f(x)] = Pr [A(x;G(z)) =f(x)].

r~{0,1}m z~{0,1}5

f:1{0,1}"* - {0,1}, a function computed by A.

Simulating a randomized algorithm A(x; 1)

» G:{0,1}° - {0,1}™ be the function that takes a seed z and
outputs the sequence generated by rand().

G(z) = zry1y13 ..., where 1;,; = (ar; + ¢) mod 231, r, = z,
a = 1103515245,
c = 12345.

> |s it possible to simulate A(x;) in the following sense?

vx, brolAGGr) =1] ~ ZNE{HS[A(x;G(z)) =1].

f:1{0,1}"* - {0,1}, a function computed by A.
For simplicity, we assume f = 1. (This does not lose the generality.)

rand() some A

> G:{0,1}5 - {0,1}™
231

G(z) = zryry1y ..., where ;.1 = (ar; + ¢) mod 2°4, ry = z,
» Consider the following algorithm A(; r): — Remark
Even if a and ¢ are unknown,
if . = (ar~ + ¢) mod 231 there is an efficient algorithm A’
A(; To11 1) = 1 1 (0) that distinguishes G (z) from 7.

otherwise A’ solves the following linear equations:
r, = (arg + ¢) mod 231
r, = (ar; + ¢) mod 231

lAGG(2) =1] =1.

Z~ 01}5

> {I(’)rl} [AG) = 1] = Pr[ry = (ary + ¢) mod 23] = 2731 = 0.
r~{0,1}m

> A(G—) a sequence G (z) from the uniform distribution 7,

Statistical Test

> Let ¢:{0,1}° — {0,1}™ be a function such that s < m.

Regarded as a generator that takes a seed z of length s
and output a “pseudorandom sequence” G(z).

> T:{0,1}™ — {0,1} is said to e-distinguish G (=) (from the uniform distribution) if

L PrlTE@) =1] = pr [T0) =112 €

» T is also called an e-statistical test (or e-distinguisher) for .

» By default, we choose € := 1/m and simply say T distinguishes G ().

Pseudorandom Generator (PRG)

> Let G:{0,1}° - {0,1}™ be a function such that s < n.

» (G is called a if
every T € C cannot distinguish . In other words, forevery T € C,

IT(G(z))=1]— Pr_[T(r)=1]|<e

r~{0,1}m

Z~ {O 1}s
* rand() is a bad example of a candidate pseudorandom generator.
Never use rand() for cryptographic purposes!

» We can simulate A(x; r) if there is a PRG G secure against C such that
A(x; —) € C for every input x € {0,1}*. In other words:

|A(x;G(2) = 1] - [A(x;) = 1]| <

{0 1}m

Z~ {O 1}s

4 PRG = BPP can be derandomized

» Assume 3 PRG G = {Gm: {0,1}000gm) _, {0,1}’"} secure against

and computable in time m°@).

» Take any f € BPP and a randomized algorithm A(x; r) for f: for some polynomial p,

Pr [A(x;r) =f(x)] =~

r~{0,1}P()

0 (security)

Pr [A (X; Gp(n) (Z)) f(x)] Z — L = E

z~{0,1}00og n) p(n) — 3

» The new algorithm A4 (x; Gpn) (z)) only uses O (log n) random bits!

—> Can be simulated in polynomial time by exhaustively trying all the random bits.

Outline

1. The notion of pseudorandom generator

2. Constructions of pseudorandom generators

Three key ideas for constructing PRGs
1. Distinguishable < Next-bit-predictable
G:{0,1}" - {0,1}**1, 1-bit extension

2. Hybrid arguments
G:{0,1}"% = {0,1}***% k-bit extension

3. Combinatorial design

G:{0,1}00og™m) _; £0 1}™ exponential stretch

The simplest construction of a PRG

> Let’s construct a non-trivial pseudorandom generator G: {0,1}"* — {0,1}"**1.

Claim (essentially due to [Yao’82])

If E & i0-SIZE(2¢™; §), then there is a PRG G:{0,1}"* — {0,1}"**!
0-secure against exponential-size circuits and computable in time 20(m),

» SIZE(s(n); §): The class of functions h:{0,1}* — {0,1} such that, for all n,

there is a circuit C of size s(n) that h,,i.e.
1
— > —]
Pr [C0) = hy(0)] =5+ 8

» Take a hard function h: {0,1}* — {0,1} such that h € E \ i0-SIZE(2¢"; §).

The Construction of the Simple PRG

G":{0,1}" - {0,1}"*1,

6"(2) = (2,hy(2)) € (0,1} h: a hard function in E.

Construction:

Claim: If 3 a distinguisher D:{0,1}**1 - {0,1} for G", then h,, can be approximated.
D: a circuit of size 2¢". (by a circuit of size 2°™.)

— Contradiction to h & io-SIZE(2¢"; §).
— G is secure against circuits of size 2€".

. —1] — — >
Proof: ze{I()),r1}n[D(G(Z)) 1] we{g,){}nﬂ[D (w) =1]| = 6.
ze{%rl}n[D(G(z)) =1] - weippraal PW) = 1126 ze{%,rl}n[D(G(Z)) =1]- wegqnaa PW) =11 < =8,
Pr [D (G(z)) = 1] [D'(w) = 1] = 6.

z€{0,1}1 E{O 1}n+1

Distinguishable =

Claim: If 3 a distinguisher D:{0,1}**1 - {0,1} for G", then h,, can be approximated.

D: a circuit of size 2€™. (by a circuit of size 2¢™.)

Ze{l:()),rl}n[D (Z, hn(Z)) = 1] — We{g{}n_l_l[D(W) e 1] > 6

» D can distinguish (1) (Z, hn(z)), where z ~ {0,1}", from

(2) (z,b), where z ~ {0,1}"* and b ~ {0,1}.
[Yao’82]
—> Can construct a PP,

Given the first n-bits of G(z), can you predict the next bit?
z hn(2)

(Cf. Each next bit of rand() can be predicted easily.)

Distinguishable = Next-bit-predictable

Claim: If 3 a distinguisher D:{0,1}**1 - {0,1} for G", then h,, can be approximated.

ZE{li)rl}n[D (Z, hn(Z)) = 1] — WE{(I)D,]I_.}TL+1[D (W) = 1] > 6

» D can distinguish (1) (z, hn(z)), where z ~ {0,1}", from
(2) (z,b), where z ~ {0,1}"* and b ~ {0,1}.
“next-bit predictor” PP:

b ifD(z,b) =1

D(, k) — ~
PP(z;b) = {b @1 otherwise b~ {01}

Idea: If D(z,b) = 1, we can expect that h(z) = b.

1
Fact: P;I‘[PD(Z; b) = h,(2)] = > + 6 — h,, can be §-approximated.

b if D(z,b) =1
Proof of the Fact PP(z;b) = {b S1 otherwise
1
Fact: [PD(Z b) =h,(2)] == 5+)
Assumption: [D(Z h (Z)) = 1] {f(’)rl} ID(z,b) = 1] = 6.
b~{0,1}
omserve P51 D 5) = 11 = 2 Pr{D (2, 1n(2) = 1] # 5 Pr{D (2, k() = 1].

b~{0,1} (b = h,(z) or b = =hy,(2))

= % [D(z ha(2)) = 1] - —Pr[D(Z —h,(2)) = 1] = 6.

Pr Pr(PP(z;b) = hn(2)] = 1Pr[D(z ha(2)) = 1] + ; Pr[D(z,~h,,(2)) = 0] (b = hy(2) or b = =hy(2))

= 2 Pr[D (2 k(@) = 1] 4 5 — Pr[D(z, < (2) = 1] 2 5 + 6.

The simplest construction of a PRG

Claim (essentially due to [Yao’82])

If E € i0o-SIZE(2¢™; §), then there is a PRG G: {0,1}"* - {0,1}"+!
5-secure against 2€™-sized circuits and computable in time 2°0™),

> The Construction:

* Take a hard function h: {0,1}* — {0,1} such that h € E \ i0-SIZE(2¢"; §).
- Define G"(2) == (z,h(2)) € {0,1}**1, where z € {0,1}".

D: a distinguisher = PP: a next-bit predictor

Three key ideas for constructing PRGs
1. Distinguishable < Next-bit-predictable
G:{0,1}" - {0,1}**1, 1-bit extension

2. Hybrid arguments
G:{0,1}"% = {0,1}**X k-bit extension

3. Combinatorial design

G:{0,1}00og™m) _; £0 1}™ exponential stretch

1-bit extension to k-bit extension

* Take a hard function h:{0,1}" - {0,1}.
e APRGG":{0,1}" - {0,1}**1 that extends the seed by 1 bit:
G"(z) = (z,h(2)). Hardness of h = Security of G"

 Want to extend the seed by k bits:
DP;: {0,1}™ — {0,1}"k+k

DR/ = (6) %"
DP}?(Zp ey Zg) = (zl, e Ziy W(Z29), ..., h(Zk))

k-bit Extension:

Claim

If E & io-SIZE(2€™; 6 /k), then there is a PRG G: {0,1}*" — {0,1}"*¥
5-secure against 2€™-sized circuits and computable in time 2°0™),

> The Construction:

* Take a hard function h: {0,1}* — {0,1} such that h € E \ i0-SIZE(2¢"*; 6 / k).
* Define DP*: ({0,1}M)* — {0,1}k+k
DP(zy, ..., 2) = (Zl, s Zi, h(29), ..., h(zk)).

Hybrid Argument

DP¢: ({0,13™)" — {0,1}"e*k
DP*(zy, ..., z) = (Zl, o, Zi, h(2), ..., h(Zk)).

» Assume 3 a distinguisher D for DP,?(—):

Pr |D(DPi(zy, ..., 2)) = 1| - L Pr D21, 2 by, o b)) = 1] 26

Z1,-Zlk
bl,...,bk
» Itis difficult to directly compare (zl, s Zi, h(21), ..., h(zk)) and (zq, ..., Z, by, ..., by,).

» Key ldea: , Which considers intermediate distributions H,, Hy, ..., Hy.

Hybrid Argument

ZlPer[D(Zl, s Zie, h(29), ...,h(zk)) = 1] — zl,l.)..ljzk[D(Zl’ iy Ziy by, b)) =11 2 6
o bl,...,bk

> Define = (24, ., 2y, h(29), ..., h(2;), bis1 ..., by)
where i € {0, ..., k}, zZj ~ {0,1}", b;j ~ {0,1}foranyj € {1,..,k}.

k
5 < Pr[D(Hy) = 1] = Pr[D(Hy) = 1] =) (Pr[D(H,) = 1] = Pr[D(H;_y) = 1])
=1
= Pr[D(H;) =1]—-Pr|D(H;_;) =1]=6/k forsomei € {0, ..., k}.

Pr|D(zq, ..., zx, h(21), ..., h(2;), bj11, ..., by) = 1]
—PI‘[D(Zl, VA h(Zl), ceey bl', bi+1 ceey bk) — 1] = 6/k

= D'(z;, b;) == D(z4, ..., 2y, h(z1), ..., by)

Fix z's and b’s except for (z;, b;).

= Pr[D'(z,h(z)) =1] = Pr(D'(z,b) =112 8/k = heSIZEQ;5/k).

Interlude: Recent applications of DP,?

» The k-wise direct product generator DP,? is not a good construction
in the context of derandomization.

DP}: {0,1}F — {0,1}"k+k
nk + k random bits can be reduced to nk.
» However, it recently turned out that DP,? is an important tool for

analyzing the (meta-)complexity of Kolmogorov complexity.
[H. (FOCS’18)], [H. (STOC’20)], [H. (CCC’20)]

Three key ideas for constructing PRGs
1. Distinguishable < Next-bit-predictable
G:{0,1}" - {0,1}**1, 1-bit extension

2. Hybrid arguments
G:{0,1}"% = {0,1}***% k-bit extension

3. Combinatorial design

G:{0,1}00ogm) _, £0 1} exponential stretch

k-bit extension to exponential extension

» The k-wise direct product generator:

DR (24, s 2k) P (71, o, 700, M(21), v, R(21))

Computing h is hard = DP}! is secure.

» Let’s try to evaluate h on more (correlated) inputs!

NW z - (Zsl;---»Zsm) "’(h(ZSl)""’h(ZSm))

Exponential Stretch

Theorem [Nisan-Wigderson '94]

If E & i0-SIZE(2€™; 27€M), then there is a PRG G: {0,1}°Uog™m) _; o 1}m
secure against m-size circuits and computable in time m°®, and
in particular, P = BPP.

> The Construction:

* Take a hard function h: {0,1}* — {0,1} such that h € E \ io-SIZE(2¢™; 27¢™).
« Define NW":{0,1}0d0g8™) _; £ 1}™ as
NW"(z) = (hn(Zsl)» ---»hn(Zsm)) where n = O(logm).

The Nisan-Wigderson Generator NW"

» Take a hard function h: {0,1}"* — {0,1}.

J11 J12 J13
Seed z A= {0’1}0(11) 51 = U11,J12,J13}
51V 5 /
ZSl ZSZ ZS4 281 = Zj11%j12%)13
(S {O,l}n (n = 3)
l l l
Output h(zs,) h(zs,) h(zs,) -~ =: NW"(2) €{0,1}*""

S {0'1} m = ZETL

Combinatorial Design

Fact (Construction of a combinatorial design)

Forany e > 0, forsome d = 0(n), forany m < 2™,
there exists a family of sets S, ..., S;,; € {1, ..., d} such that

1. |S;| =nforalli €{l,..,m}and
2. |Sl- n5j| <enforanyi #j € {l,..,m}.

Moreover, {S;}; can be computed by a greedy algorithm in time m°%).

z = (zq,...,24) €{0,1}¢ = {0,1}0M),
Zg, = (zjl, ""Zjn) € {0,1}", where S; = {j; < - < j,}.

NW": {0,134=0™ - {0,132
NW"(z) = (hn(Zsl)» ...,hn(zgm)) where n = O(logm).

Security Proof of NW"
Pr :D (NWh(z)) - 1] —Pr[D(w) = 1] = 1/m
Pr :D (h(zsl) ...h(zsm)) - 1] —PrlDw) = 1] = 1/m

» The i-th hybrid distribution: H; = (h(zsl), ...,h(zsi),wiﬂ, ...,Wm), where z ~ {0,1}¢,w ~ {0,1}™.

Pr[D(H;) = 1] — Pr[D(H;_,) = 1] = 1/m? forsomei € {1, ..., m}.
H;: (h(Zsl), . h(zsi),wiﬂ, - Wm)

H;_;: (h(Zsl), iy Wi, Wiiq, een) Wm)
> FiXzg1, apsp Wis1s - Wi = 3 D’ distinguishes (h(zsl), ...,h(zsi)) from (h(zsl), - Wi).

» Yao's distinguisher to next-bit predictor transform = 3 pp’ predicts h(Zsi)i

gsri [PD’ (h(251),...,h(zsl)) h(zs,)] §+W

= (h(zsl): ""h(ZSi—1)) can be computed by a circuit of size 0(2¢"nm) = 20(€n),
(because |S; N S;| < en and any function on en bits can be computed by a circuit of size 0(2¢"*n))

— h € SIZE(20(em); 2-2en)

Three key ideas for constructing PRGs
1. Distinguishable < Next-bit-predictable
G:{0,1}" - {0,1}**1, 1-bit extension

2. Hybrid arguments
G:{0,1}"% = {0,1}***% k-bit extension

3. Combinatorial design

G:{0,1}00og™m) _; £0 1}™ exponential stretch

Nisan-Wigderson to Impagliazzo-Wigderson

[Nisan-Wigderson '94] E & io-SIZE(2¢™;27¢") = P = BPP

[Impagliazzo-Wigderson '97] E & io-SIZE(2€") = P = BPP

Properties of Enc: f » Enc(f)
[Sudan-Trevisan-Vadhan ’'01]

1. fe€E = Enc(f) € E/.
2. Enc(f) € i0-SIZE(2€";27¢") = f € SIZE (26’").

Hardness versus Randomness Trade-off

EXP & i0SIZE(n°V) = BPP < SUBEXP := ﬂ DTIME(2™).
€>0
(3 PRG G: {0,1}™ - {0,1}™, computable in time 2™°)

EXP ¢ ﬂ i0SIZE(2"") = BPP € QuasiP := DTIME (200g™°®).

€e>0
(3 PRG G: {0,1}o8 m)%W {0,1}™, computable in time 2108 m)o(l))

E¢ ﬂ i0SIZE(2€") = BPP C P.
€0 (3 PRG G:{0,1}°U08™M) _; £0 1}™ computable in time m%®)

More Applications Beyond Derandomization

> Black-box pseudorandom generator construction NW"
— a seeded extractor [Trevisan '01]

> Learning ACY[@] circuits.
[Carmosino-Impagliazzo-Kabanets, Kolokolova CCC‘16]

» Non-black-box worst-case to average-case reduction within NP.
[H. FOCS’18]

Summary

» How can we derandomize a randomized algorithm A(x; r)?

1. Come up with a problem h: {0,1}0Uog™) _; {0,1} that cannot be
computed by A(X, —). (Vx) (More precisely, h & SIZEA(2¢"; 27€M).)
 Example: an E-complete problem

2. Generate a pseudorandom sequence r := NW"(z) from a seed z.
3. Simulate A(x; 7).

» An excellent reference: Salil Vadhan, “Pseudorandomness”, 2012

