Pseudorandomness and Derandomization

Shuichi Hirahara

(National Institute of Informatics)

Randomized algorithms

> Randomized algorithms are useful and fast, but...

- ► How can we implement randomized algorithms?
 - srand(time(NULL)); rand(); rand(); ... ← No nice theoretical guarantee
 - Use noise, the motion of mouse pointers, radioactive rays (放射線)
 - ← It costs a lot to obtain truly random bits.
- >Two approaches: Randomness extractor and derandomization.

Two approaches

1. Randomness extractor

- enables us to extract (almost) uniform bits from "sufficiently random" sources.
 ("sufficiently random": min-entropy is large)
- Example: extracts uniform bits from the motion of a mouse pointer.

2. Derandomization

- The set of techniques that reduces the amount of random bits used by an efficient randomized algorithm to (ideally) $O(\log n)$ bits.
- $O(\log n)$ random bits can be simulated in polynomial time.

BPP: Bounded-error Probabilistic Polynomial-time

- $ightharpoonup f: \{0,1\}^* \to \{0,1\}$, a decision problem.
- \triangleright A: a two-sided-error polynomial-time randomized algorithm for solving f.

For some polynomial p, for all $n \in \mathbb{N}$, for any input $x \in \{0,1\}^n$, the following holds:

$$\Pr_{r \sim \{0,1\}^{p(n)}} [A(x; r) = f(x)] \ge \frac{3}{4}.$$
 x: an input

r: random bits

 \triangleright BPP is the class of decision problems f that can be solved by some two-sided-error polynomial-time randomized algorithm.

Hardness versus Randomness framework

- >[Yao '82], [Blum & Micali '84], [Nisan & Wigderson '94], ...
- ➤If there is a circuit lower bound for explicit functions, then randomized algorithms can be derandomized.

Theorem [Impagliazzo & Wigderson 1997]

If $\mathbf{E} \nsubseteq \text{io-SIZE}(2^{\epsilon n})$ for some constant $\epsilon > 0$, then P = BPP.

 \triangleright An explicit function: computable by a Turing machine in time $2^{O(n)}$.

Complexity classes

- \triangleright E \nsubseteq io-SIZE($2^{\epsilon n}$) means:
 - There is a function $f: \{0,1\}^* \to \{0,1\}$ such that
 - 1. f is computable in time $2^{O(n)}$, and
 - 2. for all large $n \in \mathbb{N}$, f_n cannot be computed by a circuit of size $2^{\epsilon n}$.
 - $f_n: \{0,1\}^n \to \{0,1\}$, the restriction of f to n-bit inputs.
- \triangleright E = DTIME($2^{O(n)}$)
- ightharpoonup SIZE(s(n)) is the class of the functions $f:\{0,1\}^* \to \{0,1\}$ such that f_n is computable by a circuit of size s(n) for all large n.
- ightharpoonup io- $\mathcal{C} = \{f | \exists g \in \mathcal{C}, \exists n_0 \forall n \geq n_0, f_n = g_n \}.$
- It is an open question to prove $E \nsubseteq SIZE(6n)$. But believed to be $E \nsubseteq io\text{-}SIZE(2^{\epsilon n})$.

Hardness versus Randomness

```
Theorem [Impagliazzo & Wigderson 1997]  E \not\subseteq io\text{-SIZE}(2^{\epsilon n}) \implies P = BPP.
```

- The hypothesis: Cannot compute some explicit function. (Hardness)
- > The conclusion: Can simulate BPP in deterministic polynomial time.

Impossibility ⇒ Possibility

Hardness versus Randomness

```
Theorem [Impagliazzo & Wigderson 1997]  E \not\subseteq io\text{-SIZE}(2^{\epsilon n}) \implies P = BPP.
```

- The hypothesis: Cannot compute some <u>explicit function</u>. (Hardness)
- The conclusion: <u>Can_compute</u> a "pseudorandom generator" that cannot be distinguished by any efficient algorithm.

Impossibility ⇒ Possibility

Outline

1. The notion of pseudorandom generator

2. Constructions of pseudorandom generators

Is rand() a good pseudorandom sequence?

- \triangleright Let's try to implement a randomized algorithm A(x; r).
 - How should we deal with random bits r?

```
r_0 \coloneqq \text{srand(time(NULL))}

r_1 \coloneqq \text{rand()}

r_2 \coloneqq \text{rand()}

r_3 \coloneqq \text{rand()}
```

An implementation of rand()

```
int rand () {
  rand_next = rand_next * 1103515245 + 12345;
  return rand_next & 0x7fffffff;
}
```

> rand() is a linear congruential generator.

Is rand() a good pseudorandom sequence?

- \triangleright Let's try to implement a randomized algorithm A(x; r).
 - How should we deal with random bits r?

```
r_0 \coloneqq \text{seed}
r_1 \coloneqq (1103515245 \times r_0 + 12345) \mod 2^{31}
r_2 \coloneqq (1103515245 \times r_1 + 12345) \mod 2^{31}
r_3 \coloneqq (1103515245 \times r_2 + 12345) \mod 2^{31}
...
```

An implementation of rand()

```
int rand () {
  rand_next = rand_next * 1103515245 + 12345;
  return rand_next & 0x7fffffff;
}
```

> rand() is a linear congruential generator.

Simulating a randomized algorithm A(x; r)

 $ightharpoonup G: \{0,1\}^s \to \{0,1\}^m$ be the function that takes a seed z and outputs the sequence generated by rand().

$$G(z) = zr_1r_2r_3 \dots$$
, where $r_{i+1} = (ar_i + c) \mod 2^{31}$, $r_0 = z$, $a = 1103515245$, $c = 12345$.

 \triangleright Is it possible to <u>simulate</u> A(x;r) in the following sense?

$$\forall x, \qquad \Pr_{\boldsymbol{r} \sim \{0,1\}^m} [A(x; \boldsymbol{r}) = f(x)] \approx \Pr_{\boldsymbol{z} \sim \{0,1\}^S} [A(x; \boldsymbol{G}(\boldsymbol{z})) = f(x)].$$

• $f: \{0,1\}^n \to \{0,1\}$, a function computed by A.

Simulating a randomized algorithm A(x; r)

 $ightharpoonup G: \{0,1\}^s \to \{0,1\}^m$ be the function that takes a seed z and outputs the sequence generated by rand().

$$G(z) = zr_1r_2r_3 \dots$$
, where $r_{i+1} = (ar_i + c) \mod 2^{31}$, $r_0 = z$, $a = 1103515245$, $c = 12345$.

 \triangleright Is it possible to <u>simulate</u> A(x;r) in the following sense?

$$\forall x, \qquad \Pr_{r \sim \{0,1\}^m} [A(x; r) = 1] \approx \Pr_{z \sim \{0,1\}^s} [A(x; G(z)) = 1].$$

- $f: \{0,1\}^n \to \{0,1\}$, a function computed by A.
- For simplicity, we assume $f \equiv 1$. (This does not lose the generality.)

rand() cannot "simulate" some A

$$G: \{0,1\}^s \to \{0,1\}^m$$

$$G(z) = zr_1r_2r_3 \dots, \text{ where } r_{i+1} = (ar_i + c) \bmod 2^{31}, r_0 = z,$$

 \triangleright Consider the following algorithm A(;r):

$$A(; r_0 r_1 r_2 \dots) \coloneqq \begin{cases} 1 & \text{if } r_1 = (ar_0 + c) \mod 2^{31} \\ 0 & \text{otherwise} \end{cases}$$

$$ho \Pr_{z \sim \{0,1\}^s} [A(; G(z)) = 1] = 1.$$

 $\triangleright A(; -)$ distinguishes a sequence G(z) from the uniform distribution r.

Remark

Even if a and c are unknown, there is an efficient algorithm A'that distinguishes G(z) from r.

A' solves the following linear equations:

$$r_1 = (ar_0 + c) \mod 2^{31}$$

 $r_2 = (ar_1 + c) \mod 2^{31}$

Statistical Test

ightharpoonup Let $G: \{0,1\}^s \to \{0,1\}^m$ be a function such that s < m.

Regarded as a generator that takes a seed z of length s and output a "pseudorandom sequence" G(z).

 $ightharpoonup T: \{0,1\}^m \to \{0,1\}$ is said to ϵ -distinguish G(-) (from the uniform distribution) if

$$\left| \Pr_{Z \sim \{0,1\}^S} \left[T(G(Z)) = 1 \right] - \Pr_{r \sim \{0,1\}^m} \left[T(r) = 1 \right] \right| \ge \epsilon$$

- \succ T is also called an ϵ -statistical test (or ϵ -distinguisher) for G.
- \triangleright By default, we choose $\epsilon \coloneqq 1/m$ and simply say T distinguishes G(-).

Pseudorandom Generator (PRG)

- ightharpoonup Let $G: \{0,1\}^s \to \{0,1\}^m$ be a function such that s < n.
- \succ G is called a <u>pseudorandom generator</u> ϵ -secure against a class \mathcal{C} if every $T \in \mathcal{C}$ cannot distinguish G. In other words, for every $T \in \mathcal{C}$,

$$\left| \Pr_{z \sim \{0,1\}^S} \left[T(G(z)) = 1 \right] - \Pr_{r \sim \{0,1\}^m} \left[T(r) = 1 \right] \right| < \epsilon.$$

- rand() is a bad example of a candidate pseudorandom generator.
 Never use rand() for cryptographic purposes!
- We can simulate A(x; r) if there is a PRG G secure against C such that $A(x; -) \in C$ for every input $x \in \{0,1\}^*$. In other words:

$$\left| \Pr_{z \sim \{0,1\}^S} \left[A(x; G(z)) = 1 \right] - \Pr_{r \sim \{0,1\}^m} \left[A(x; r) = 1 \right] \right| < \frac{1}{m}.$$

$\exists PRG \implies BPP can be derandomized$

- Assume \exists PRG $G = \{G_m: \{0,1\}^{O(\log m)} \to \{0,1\}^m\}$ secure against linear-size circuits and computable in time $m^{O(1)}$.
- \triangleright Take any $f \in BPP$ and a randomized algorithm A(x; r) for f: for some polynomial p,

$$\Pr_{r \sim \{0,1\}^{p(n)}} [A(x;r) = f(x)] \ge \frac{3}{4}.$$

(security) \leftarrow Consider the circuit $C_x(r) \coloneqq A(x;r) \oplus f(x) \oplus 1$.

$$\Pr_{z \sim \{0,1\}^{O(\log n)}} \left[A\left(x; G_{p(n)}(z)\right) = f(x) \right] \ge \frac{3}{4} - \frac{1}{p(n)} \ge \frac{2}{3}.$$

- ightharpoonup The new algorithm $A\left(x;G_{p(n)}(z)\right)$ only uses $O(\log n)$ random bits!
 - ⇒ Can be simulated in polynomial time by exhaustively trying all the random bits.

Outline

1. The notion of pseudorandom generator

2. Constructions of pseudorandom generators

Three key ideas for constructing PRGs

1. Distinguishable ⇔ Next-bit-predictable

$$G: \{0,1\}^n \to \{0,1\}^{n+1}$$
, 1-bit extension

2. Hybrid arguments

$$G: \{0,1\}^{nk} \rightarrow \{0,1\}^{nk+k}$$
, k-bit extension

3. Combinatorial design

$$G: \{0,1\}^{O(\log m)} \to \{0,1\}^m$$
, exponential stretch

The simplest construction of a PRG

 \triangleright Let's construct a non-trivial pseudorandom generator $G: \{0,1\}^n \to \{0,1\}^{n+1}$.

<u>Claim</u> (essentially due to [Yao'82])

If E $\not\equiv$ io-SIZE $(2^{\epsilon n}; \delta)$, then there is a PRG $G: \{0,1\}^n \to \{0,1\}^{n+1}$ δ -secure against exponential-size circuits and computable in time $2^{O(n)}$.

 $ightharpoonup \operatorname{SIZE}(s(n);\delta)$: The class of functions $h:\{0,1\}^* \to \{0,1\}$ such that, for all n, there is a circuit C of size s(n) that δ -approximates h_n , i.e.,

$$\Pr_{x \sim \{0,1\}^n} [C(x) = h_n(x)] \ge \frac{1}{2} + \delta.$$

 \triangleright Take a hard function $h: \{0,1\}^* \to \{0,1\}$ such that $h \in E \setminus \text{io-}\widetilde{SIZE}(2^{\epsilon n}; \delta)$.

The Construction of the Simple PRG

Construction: $G^h: \{0,1\}^n \to \{0,1\}^{n+1},$ $G^h(z) := (z, h_n(z)) \in \{0,1\}^{n+1}.$ h: a hard function in E.

If \exists a distinguisher $D: \{0,1\}^{n+1} \to \{0,1\}$ for G^h , then h_n can be approximated. Claim:

D: a circuit of size $2^{\epsilon n}$.

(by a circuit of size $2^{\epsilon n}$.)

 \Longrightarrow Contradiction to $h \notin \text{io-SIZE}(2^{\epsilon n}; \delta)$.

 \Rightarrow G^h is secure against circuits of size $2^{\epsilon n}$.

Proof:
$$\left| \Pr_{z \in \{0,1\}^n} [D(G(z)) = 1] - \Pr_{w \in \{0,1\}^{n+1}} [D(w) = 1] \right| \ge \delta.$$

$$\Pr_{z \in \{0,1\}^n} [D(G(z)) = 1] - \Pr_{w \in \{0,1\}^{n+1}} [D(w) = 1] \ge \delta \qquad \text{or} \qquad \Pr_{z \in \{0,1\}^n} [D(G(z)) = 1] - \Pr_{w \in \{0,1\}^{n+1}} [D(w) = 1] \le -\delta.$$

Distinguishable → Next-bit-predictable

Claim: If \exists a distinguisher $D: \{0,1\}^{n+1} \to \{0,1\}$ for G^h , then h_n can be approximated. D: a circuit of size $2^{\epsilon n}$. (by a circuit of size $2^{\epsilon n}$.)

$$\Pr_{z \in \{0,1\}^n} \left[D(z, h_n(z)) = 1 \right] - \Pr_{w \in \{0,1\}^{n+1}} \left[D(w) = 1 \right] \ge \delta.$$

> D can distinguish (1) $(z, h_n(z))$, where $z \sim \{0,1\}^n$, from (2) (z,b), where $z \sim \{0,1\}^n$ and $b \sim \{0,1\}$.

[Yao'82]

 \implies Can construct a "<u>next-bit predictor</u>" P^D .

Given the first n-bits of $\underline{G(z)}$, can you predict the next bit? $\underline{h_n(z)}$

Distinguishable ⇒ Next-bit-predictable

<u>Claim</u>: If \exists a distinguisher $D: \{0,1\}^{n+1} \to \{0,1\}$ for G^h , then h_n can be approximated.

$$\Pr_{z \in \{0,1\}^n} [D(z, h_n(z)) = 1] - \Pr_{w \in \{0,1\}^{n+1}} [D(w) = 1] \ge \delta.$$

> D can distinguish (1) $(z, h_n(z))$, where $z \sim \{0,1\}^n$, from (2) (z, b), where $z \sim \{0,1\}^n$ and $b \sim \{0,1\}$.

"next-bit predictor" P^D :

$$P^{D}(z;b) = \begin{cases} b & \text{if } D(z,b) = 1\\ b \oplus 1 & \text{otherwise} \end{cases} \qquad b \sim \{0,1\}$$

<u>Idea</u>: If D(z,b) = 1, we can expect that $h_s(z) = b$.

Fact:
$$\Pr_{z}[P^{D}(z;b) = h_{n}(z)] \ge \frac{1}{2} + \delta$$
 $\implies h_{n}$ can be δ -approximated.

Proof of the Fact

$$P^{D}(z;b) = \begin{cases} b & \text{if } D(z,b) = 1\\ b \oplus 1 & \text{otherwise} \end{cases}$$

Fact:
$$\Pr_{z}[P^{D}(z;b) = h_{n}(z)] \ge \frac{1}{2} + \delta$$

Assumption:
$$\Pr_{z \sim \{0,1\}^n} \left[D \left(z, h_S(z) \right) = 1 \right] - \Pr_{z \sim \{0,1\}^n} \left[D(z,b) = 1 \right] \geq \delta.$$

$$b \sim \{0,1\}$$

Observe
$$\Pr_{z \sim \{0,1\}^n}[D(z,b) = 1] = \frac{1}{2} \Pr_{z}[D(z,h_n(z)) = 1] + \frac{1}{2} \Pr_{z}[D(z,\neg h_n(z)) = 1].$$

$$b \sim \{0,1\}$$

$$(b = h_n(z) \text{ or } b = \neg h_n(z))$$

$$\Rightarrow \frac{1}{2} \Pr_{z \sim \{0,1\}^n} \left[D\left(z, h_n(z)\right) = 1 \right] - \frac{1}{2} \Pr_z \left[D\left(z, \neg h_n(z)\right) = 1 \right] \ge \delta.$$

$$\Pr_{z,b}[P^{D}(z;b) = h_{n}(z)] = \frac{1}{2}\Pr[D(z,h_{n}(z)) = 1] + \frac{1}{2}\Pr[D(z,\neg h_{n}(z)) = 0] (b = h_{n}(z) \text{ or } b = \neg h_{n}(z))$$

$$= \frac{1}{2}\Pr[D(z,h_{n}(z)) = 1] + \frac{1}{2}-\Pr[D(z,\neg h_{n}(z)) = 1] \ge \frac{1}{2} + \delta.$$

The simplest construction of a PRG

<u>Claim</u> (essentially due to [Yao'82])

If $E \nsubseteq \text{io-SIZE}(2^{\epsilon n}; \delta)$, then there is a PRG $G: \{0,1\}^n \to \{0,1\}^{n+1}$ δ -secure against $2^{\epsilon n}$ -sized circuits and computable in time $2^{O(n)}$.

- > The Construction:
 - Take a hard function $h: \{0,1\}^* \to \{0,1\}$ such that $h \in E \setminus \text{io-}\widetilde{SIZE}(2^{\epsilon n}; \delta)$.
 - Define $G^h(z) := (z, h(z)) \in \{0,1\}^{n+1}$, where $z \in \{0,1\}^n$.
- $ightharpoonup \underline{\mathsf{Key Idea:}} \quad D$: a distinguisher $\implies P^D$: a next-bit predictor

Three key ideas for constructing PRGs

1. Distinguishable ⇔ Next-bit-predictable

$$G: \{0,1\}^n \to \{0,1\}^{n+1}$$
, 1-bit extension

2. Hybrid arguments

$$G: \{0,1\}^{nk} \to \{0,1\}^{nk+k}, k$$
-bit extension

3. Combinatorial design

$$G: \{0,1\}^{O(\log m)} \to \{0,1\}^m$$
, exponential stretch

1-bit extension to k-bit extension

- Take a hard function $h: \{0,1\}^n \rightarrow \{0,1\}$.
- A PRG $G^h: \{0,1\}^n \to \{0,1\}^{n+1}$ that extends the seed by 1 bit:

$$G^h(z) := (z, h(z)).$$
 Hardness of $h \Longrightarrow Security$ of G^h

• Want to extend the seed by *k* bits:

$$DP_k^h: \{0,1\}^{nk} \to \{0,1\}^{nk+k}$$

$$DP_k^h := (G^h)^{\bigoplus k}$$

$$DP_k^h(z_1, ..., z_k) := (z_1, ..., z_k, h(z_1), ..., h(z_k))$$

k-bit Extension: k-wise Direct Product Genertor

Claim

If E $\not\subseteq$ io-SIZE $(2^{\epsilon n}; \delta/k)$, then there is a PRG $G: \{0,1\}^{kn} \to \{0,1\}^{kn+k}$ δ -secure against $2^{\epsilon n}$ -sized circuits and computable in time $2^{O(n)}$.

- \triangleright The Construction: k-wise Direct Product Generator
 - Take a hard function $h: \{0,1\}^* \to \{0,1\}$ such that $h \in E \setminus \text{io-}\widetilde{\text{SIZE}}(2^{\epsilon n}; \delta/k)$.
 - Define $\mathrm{DP}_k^h \colon (\{0,1\}^n)^k \to \{0,1\}^{nk+k}$ $\mathrm{DP}_k^h(z_1,\ldots,z_k) \coloneqq \big(z_1,\ldots,z_k,h(z_1),\ldots,h(z_k)\big).$

Key Idea: Hybrid Argument

$$DP_k^h: (\{0,1\}^n)^k \to \{0,1\}^{nk+k}$$

$$DP_k^h(z_1,...,z_k) := (z_1,...,z_k,h(z_1),...,h(z_k)).$$

 \triangleright Assume \exists a distinguisher D for $DP_k^h(-)$:

$$\Pr_{z_1,\dots,z_k}\left[D\left(\mathrm{DP}^h_k(z_1,\dots,z_k)\right)=1\right]-\Pr_{z_1,\dots,z_k}\left[D(z_1,\dots,z_k,b_1,\dots,b_k)=1\right]\geq \delta$$

- \succ It is difficult to directly compare $(z_1, \ldots, z_k, h(z_1), \ldots, h(z_k))$ and $(z_1, \ldots, z_k, b_1, \ldots, b_k)$.
- \succ Key Idea: <u>Hybrid argument</u>, which considers intermediate distributions H_0, H_1, \dots, H_k .

Hybrid Argument

$$\Pr_{z_1,\ldots,z_k} \left[D \left(z_1,\ldots,z_k,h(z_1),\ldots,h(z_k) \right) = 1 \right] - \Pr_{z_1,\ldots,z_k} \left[D \left(z_1,\ldots,z_k,b_1,\ldots,b_k \right) = 1 \right] \geq \delta$$

$$\equiv H_k$$

$$b_1,\ldots,b_k \equiv H_0$$

➤ Define the *i*-th hybrid $H_i \equiv (z_1, ..., z_k, h(z_1), ..., h(z_i), b_{i+1}, ..., b_k)$ where $i \in \{0, ..., k\}, z_i \sim \{0,1\}^n, b_i \sim \{0,1\}$ for any $j \in \{1, ..., k\}$.

$$\delta \le \Pr[D(H_k) = 1] - \Pr[D(H_0) = 1] = \sum_{i=1}^{k} (\Pr[D(H_i) = 1] - \Pr[D(H_{i-1}) = 1])$$

- \implies $\Pr[D(H_i) = 1] \Pr[D(H_{i-1}) = 1] \ge \delta/k$ for some $i \in \{0, ..., k\}$.
- $\Rightarrow \begin{array}{l} \Pr[D(z_1, \ldots, z_k, h(z_1), \ldots, \frac{h(z_i)}{b_i}, b_{i+1}, \ldots, b_k) = 1] \\ -\Pr[D(z_1, \ldots, z_k, h(z_1), \ldots, \frac{b_i}{b_i}, b_{i+1}, \ldots, b_k) = 1] \geq \delta/k \end{array} \quad \begin{array}{l} D'(z_i, b_i) \coloneqq D(z_1, \ldots, z_k, h(z_1), \ldots, b_k) \\ \text{Fix z's and b's except for (z_i, b_i).} \end{array}$
- $\Rightarrow \Pr_{z_i} \left[D' \left(z_i, h(z_i) \right) = 1 \right] \Pr_{z_i, b_i} \left[D' \left(z_i, b_i \right) = 1 \right] \ge \delta/k \quad \Rightarrow \quad h \in \widetilde{\text{SIZE}}(2^{\epsilon n}; \delta/k).$

Interlude: Recent applications of DP_k^h

 \triangleright The k-wise direct product generator DP_k^h is not a good construction in the context of derandomization.

$$DP_k^h: \{0,1\}^{nk} \to \{0,1\}^{nk+k}$$

nk + k random bits can be reduced to nk.

However, it recently turned out that DP_k^h is an important tool for analyzing the (meta-)complexity of Kolmogorov complexity. [H. (FOCS'18)], [H. (STOC'20)], [H. (CCC'20)]

Three key ideas for constructing PRGs

1. Distinguishable ⇔ Next-bit-predictable

$$G: \{0,1\}^n \to \{0,1\}^{n+1}$$
, 1-bit extension

2. Hybrid arguments

$$G: \{0,1\}^{nk} \to \{0,1\}^{nk+k}, \ k$$
-bit extension

3. Combinatorial design

$$G: \{0,1\}^{O(\log m)} \to \{0,1\}^m$$
, exponential stretch

k-bit extension to exponential extension

 \triangleright The k-wise direct product generator:

$$\mathrm{DP}_k^h \colon \ (z_1, \dots, z_k) \mapsto \big(z_1, \dots, z_k, h(z_1), \dots, h(z_k)\big)$$

$$\mathsf{Computing} \ h \ \mathsf{is} \ \mathsf{hard} \Longrightarrow \mathrm{DP}_k^h \ \mathsf{is} \ \mathsf{secure}.$$

Let's try to evaluate h on more (correlated) inputs!

$$NW^h: z \mapsto (z_{S_1}, \dots, z_{S_m}) \mapsto (h(z_{S_1}), \dots, h(z_{S_m}))$$

Exponential Stretch

Theorem [Nisan-Wigderson '94]

If $E \nsubseteq \text{io-SIZE}(2^{\epsilon n}; 2^{-\epsilon n})$, then there is a PRG $G: \{0,1\}^{O(\log m)} \to \{0,1\}^m$ secure against m-size circuits and computable in time $m^{O(1)}$, and in particular, P = BPP.

- > The Construction: The Nisan-Wigderson Generator
 - Take a hard function $h: \{0,1\}^* \to \{0,1\}$ such that $h \in E \setminus \text{io-}\widetilde{SIZE}(2^{\epsilon n}; 2^{-\epsilon n})$.
 - Define $\operatorname{NW}^h:\{0,1\}^{O(\log m)} \to \{0,1\}^m$ as $\operatorname{NW}^h(z) \coloneqq \left(h_n(z_{S_1}),\dots,h_n(z_{S_m})\right) \quad \text{where } n = O(\log m).$

The Nisan-Wigderson Generator NW^h

 \triangleright Take a hard function $h: \{0,1\}^n \rightarrow \{0,1\}$.

Combinatorial Design

Fact (Construction of a combinatorial design)

For any $\epsilon > 0$, for some d = O(n), for any $m \leq 2^n$, there exists a family of sets $S_1, \dots, S_m \subseteq \{1, \dots, d\}$ such that

- 1. $|S_i| = n$ for all $i \in \{1, ..., m\}$ and
- 2. $|S_i \cap S_j| \le \epsilon n$ for any $i \ne j \in \{1, ..., m\}$.

Moreover, $\{S_i\}_i$ can be computed by a greedy algorithm in time $m^{O(1)}$.

$$\begin{split} z &= (z_1, \dots, z_d) \in \{0,1\}^d = \{0,1\}^{O(n)}. \\ z_{S_i} &\coloneqq \left(z_{j_1}, \dots, z_{j_n}\right) \in \{0,1\}^n, \text{ where } S_i = \{j_1 < \dots < j_n\}. \\ \text{NW}^h &: \{0,1\}^{d=O(n)} \to \{0,1\}^{2^{\epsilon n}} \\ \text{NW}^h(z) &\coloneqq \left(h_n(z_{S_1}), \dots, h_n(z_{S_m})\right) \quad \text{ where } n = O(\log m). \end{split}$$

Security Proof of NW^h

$$\Pr_{z} \left[D\left(\mathrm{NW}^{h}(z) \right) = 1 \right] - \Pr_{w} [D(w) = 1] \ge 1/m$$

$$\Pr_{z} \left[D\left(h(z_{S_{1}}) \dots h(z_{S_{m}}) \right) = 1 \right] - \Pr_{w} [D(w) = 1] \ge 1/m$$

 \succ The i-th hybrid distribution: $H_i \coloneqq (h(z_{S_1}), \dots, h(z_{S_i}), w_{i+1}, \dots, w_m)$, where $z \sim \{0,1\}^d$, $w \sim \{0,1\}^m$.

$$\Pr[D(H_i) = 1] - \Pr[D(H_{i-1}) = 1] \ge 1/m^2 \text{ for some } i \in \{1, ..., m\}.$$

$$H_i: (h(z_{S_1}), ..., h(z_{S_i}), w_{i+1}, ..., w_m)$$

$$H_{i-1}: (h(z_{S_1}), \dots, w_i, w_{i+1}, \dots, w_m)$$

- ightharpoonup Fix $z_{\{1,\ldots,d\}\setminus S_i}, w_{i+1},\ldots,w_m\Longrightarrow \exists \ D'$ distinguishes $\left(h(z_{S_1}),\ldots,h(z_{S_i})\right)$ from $\left(h(z_{S_1}),\ldots,w_i\right)$.
- \triangleright Yao's distinguisher to next-bit predictor transform $\Longrightarrow \exists \ P^{D'}$ predicts $h(z_{S_i})$:

$$\Pr_{z_{S_i}} \left[P^{D'} \left(h(z_{S_1}), \dots, h(z_{S_{i-1}}) \right) = h(z_{S_i}) \right] \ge \frac{1}{2} + \frac{1}{m^2}.$$

$$z_{S_i} \mapsto \left(h(z_{S_1}), \dots, h(z_{S_{i-1}})\right)$$
 can be computed by a circuit of size $O(2^{\epsilon n}nm) = 2^{O(\epsilon n)}$.

(because $|S_i \cap S_1| \le \epsilon n$ and any function on ϵn bits can be computed by a circuit of size $O(2^{\epsilon n}n)$)

$$\Rightarrow h \in \widetilde{SIZE}(2^{O(\epsilon n)}; 2^{-2\epsilon n}).$$

Three key ideas for constructing PRGs

1. Distinguishable ⇔ Next-bit-predictable

$$G: \{0,1\}^n \to \{0,1\}^{n+1}$$
, 1-bit extension

2. Hybrid arguments

$$G: \{0,1\}^{nk} \rightarrow \{0,1\}^{nk+k}$$
, k-bit extension

3. Combinatorial design

$$G: \{0,1\}^{O(\log m)} \to \{0,1\}^m$$
, exponential stretch

Nisan-Wigderson to Impagliazzo-Wigderson

[Nisan-Wigderson '94]
$$E \nsubseteq io\text{-}\widetilde{SIZE}(2^{\epsilon n}; 2^{-\epsilon n}) \implies P = BPP$$

Locally list-decodable error-correcting code

[Impagliazzo-Wigderson '97] $E \nsubseteq io\text{-SIZE}(2^{\epsilon n}) \implies P = BPP$

<u>Properties</u> of locally list-decodable error-correcting code Enc: $f \mapsto \text{Enc}(f)$

[Sudan-Trevisan-Vadhan '01]

- 1. $f \in E \implies Enc(f) \in E^f$.
- 2. $\operatorname{Enc}(f) \in \operatorname{io-\widetilde{SIZE}}(2^{\epsilon n}; 2^{-\epsilon n}) \implies f \in \operatorname{SIZE}(2^{\epsilon' n}).$

Hardness versus Randomness Trade-off

$$\begin{split} \operatorname{EXP} \not\subseteq \operatorname{ioSIZE}(n^{\mathcal{O}(1)}) & \Rightarrow \operatorname{BPP} \subseteq \operatorname{SUBEXP} \coloneqq \bigcap_{\epsilon > 0} \operatorname{DTIME}(2^{n^{\epsilon}}) \,. \\ & (\exists \operatorname{PRG} G \colon \{0,1\}^{m^{\epsilon}} \to \{0,1\}^{m}, \operatorname{computable in time } 2^{m^{\epsilon}}) \end{split}$$

$$\operatorname{EXP} \not\subseteq \bigcap_{\epsilon > 0} \operatorname{ioSIZE}(2^{n^{\epsilon}}) \Rightarrow \operatorname{BPP} \subseteq \operatorname{QuasiP} \coloneqq \operatorname{DTIME}\left(2^{(\log n)^{\mathcal{O}(1)}}\right) \,. \\ & (\exists \operatorname{PRG} G \colon \{0,1\}^{(\log m)^{\mathcal{O}(1)}} \to \{0,1\}^{m}, \operatorname{computable in time } 2^{(\log m)^{\mathcal{O}(1)}}) \end{split}$$

$$\operatorname{E} \not\subseteq \bigcap_{\epsilon > 0} \operatorname{ioSIZE}(2^{\epsilon n}) \Rightarrow \operatorname{BPP} \subseteq \operatorname{P.} \\ & (\exists \operatorname{PRG} G \colon \{0,1\}^{\mathcal{O}(\log m)} \to \{0,1\}^{m}, \operatorname{computable in time } m^{\mathcal{O}(1)}) \end{split}$$

More Applications Beyond Derandomization

- \triangleright Black-box pseudorandom generator construction NW^h \Rightarrow a seeded extractor [Trevisan '01]
- ➤ Learning AC⁰[⊕] circuits.

 [Carmosino-Impagliazzo-Kabanets, Kolokolova CCC'16]

Non-black-box worst-case to average-case reduction within NP. [H. FOCS'18]

Summary

- \triangleright How can we derandomize a randomized algorithm A(x; r)?
- 1. Come up with a problem $h: \{0,1\}^{O(\log n)} \to \{0,1\}$ that cannot be computed by A(x; -). $(\forall x)$ (More precisely, $h \notin \widetilde{SIZE}^A(2^{\epsilon n}; 2^{-\epsilon n})$.)
 - Example: an E-complete problem
- 2. Generate a pseudorandom sequence $r := NW^h(z)$ from a seed z.
- 3. Simulate A(x; r).
- > An excellent reference: Salil Vadhan, "Pseudorandomness", 2012