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Overview

1. Circuit lower bounds in high complexity classes

2. Circuit lower bounds in low complexity classes

3. Quantum circuit lower bounds

4. Proof techniques for circuit lower bounds
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Circuit Model (bounded fan-in)
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Circuit Model (unbounded fan-in)
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circuit model 
for constant-depth circuits
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Circuit Complexity

Circuit Complexity

A problem 𝐿 has circuit complexity 𝑠(𝑛)

= necessary and sufficient size of circuits 
that computes 𝐿 on every input length 𝑛

Constructing circuits of size 𝑠(𝑛) for 𝐿 circuit upper bounds 𝑠(𝑛)

Proving no circuit of size 𝑠(𝑛) for 𝐿 circuit lower bounds 𝑠(𝑛)

This talk
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Overview

1. Circuit lower bounds in high complexity classes

2. Circuit lower bounds in low complexity classes

3. Quantum circuit lower bounds

4. Proof techniques for circuit lower bounds
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Why Circuit Lower Bounds
in High Complexity Classes?
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Implications of Circuit Lower Bounds

Proving circuit lower bounds for class NP:

No poly-size circuit can compute some NP problem

NP ≠ P

(NP ⊄ P/poly NP ≠ P)

Major Strategy towards NP vs. P

solved by 
poly-size circuits

≈ class P
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Stay tuned for the next session of Shuichi’s talk!

Implications of Circuit Lower Bounds

Universal derandomization 
of randomized algorithms 
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Complexity Classes

• Focus on “decision problems” in this talk

– Answer = Yes or No

• P = problems which can be solved efficiently 
by deterministic classical algorithms 

(formally, Turing machines).

• NP = problems whose “witnesses” can be 
verified efficiently by deterministic classical 
algorithms.

polynomial-time (e.g. 𝑛2-time) 
in input length 𝑛

algorithm = deterministic classical algorithm
(unless specified otherwise) 10



Complexity Classes

• P/poly = problems solved efficiently by 
classical circuits.

– P ⊊ P/poly

• SIZE[𝒔(𝒏)] = problems solved by 𝑠(𝑛)-size
classical circuits.

– P/poly = SIZE[poly(n)]

polynomial-size
in input length 𝑛

circuit = deterministic classical circuit
(unless specified otherwise) 11



Recap: class NP

• NP = problems whose “witnesses” can be 
verified by efficient algorithms.

Prover
(all-mighty)

Verifier
(efficient algorithm)

1163

Problem: 𝑁 is divided by < 𝑀?

(𝑁=1396763, 𝑀=3000)

1396763

1163
= 1201

Yes

(𝑁=1396763, 𝑀=3000)

If “Yes” instance
∃witness

12



• NP = problems whose “witnesses” can be 
verified by efficient algorithms.

Recap: class NP

Prover
(all-mighty)

Verifier
(efficient algorithm)

967

Problem: 𝑁 is divided by < 𝑀?

(𝑁=1396763, 𝑀=1000)

1396763

967
is not int.

No

(𝑁=1396763, 𝑀=1000)

If “No” instance
no witness

1396763 = 1163 × 1201

whatever Prover sends,
Verifier isn’t cheated.
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Recap: class NP

Class NP

𝐿 ∈ NP
𝑥 ∈ 𝐿

𝑥 ∉ 𝐿
Def

∃𝑤: 𝑉(𝑥, 𝑤) = 1
∀𝑤: 𝑉(𝑥, 𝑤) = 0

|𝑤| = poly(|𝑥|)
𝑉: poly-time algorithm
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Recap: NP-complete problem

• SAT is NP-complete problem

– SAT ∈ P → NP = P

– SAT is the “hardest” in NP.

Problem: SAT

Given: Boolean formula 𝜙 𝑥1, … , 𝑥𝑛
Decide: 𝜙 is satisfiable?

∃ 𝑎1⋯𝑎𝑛 ∈ 0,1 𝑛: 𝜙 𝑎1, … , 𝑎𝑛 = 1?

𝑥1 ∧ 𝑥2 ∊ SAT (𝑥1 = 1, 𝑥2 = 1)
𝑥1 ∧ ¬𝑥1 ∉ SAT
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Circuit Lower Bounds for NP

NP ⊄ SIZE 5𝑛

Theorem [Iwama, Lachish, Morizumi & Raz (2005)]

The best circuit lower bound is:

Only linear lower bounds!

We can’t yet exclude the possibility

NP-complete problems could be solved by 6n-size circuit!

Relaxation:
 superlinear circuit lower bounds
 circuit lower bounds in higher classes than NP 16



EXPSPACE

NEXP

EXP

PSPACE

Superlinear Circuit Lower Bounds
in High Complexity Classes

PH

NP

P

Σ2P∩ Π2P ⊄ SIZE[n100]
[Kannan (1982)]

ZPPNP ⊄ SIZE[n100]
[Köbler & Watanabe (1997)]
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EXPSPACE

NEXP

EXP

PSPACE

Superpolynomial Lower Bounds
in High Complexity Classes

PH

NP

P

MAEXP ⊄ P/poly
[Buhrman, Fortnow & Thierauf (1998)]
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Complexity Classes

• PH (Polynomial-time Hierarchy) = NPNP
NP…

– Generalization of class NP.

– c.f. 𝚺𝟐𝐏 = NPNP = problems verified by 
polynomial-time algorithms with NP oracle

• NP oracle = black box solving any NP problem in 1 step.

• PSPACE = problems solved by polynomial-
space (poly(𝑛)-space) algorithms.

– No time bounds.
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Complexity Classes

• EXP = problems solved by exponential-time
(2poly 𝑛 -time) algorithms.
– Exponential-time analogue of class P

• NEXP = problems verified by exponential-time
algorithms.
– Exponential-time analogue of class NP

• EXPSPACE = problems solved by exponential-
space (2poly 𝑛 -space) algorithms.
– Exponential-space analogue of class PSPACE
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EXPSPACE

NEXP

EXP

PSPACE

Circuit Lower Bounds
in High Complexity Classes

PH

NP

P

MAEXP ⊄ P/poly
[Buhrman, Fortnow & Thierauf (1998)]

Σ2P∩ Π2P ⊄ SIZE[𝑛100]
[Kannan (1982)]

ZPPNP ⊄ SIZE[𝑛100]
[Köbler & Watanabe (1997)]
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Complexity Classes

• 𝚺𝟐𝐏 = NPNP, 𝚷𝟐𝐏 = complement class of 𝚺𝟐𝐏

• ZPP (Zero-error Probabilistic Polynomial-time) 
= problems solved by expected polynomial-
time randomized algorithm with zero error

• ZPPNP = problems solved by expected 
polynomial-time randomized algorithm with 
zero error with NP oracle
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Complexity Classes

• MA (Merlin-Arthur) = problems which can be 
verified by polynomial-time randomized
algorithms with high probability.

– Randomized analogue of class NP

• MAEXP = problems which can be verified by
exponential-time randomized algorithms with 
high probability.

– Exponential-time analogue of class MA
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EXPSPACE

NEXP

EXP

PSPACE

Circuit Lower Bounds
in High Lower Bounds

PH

NP

P

MAEXP ⊄ P/poly
[Buhrman, Fortnow & Thierauf (1998)]

Σ2P∩ Π2P ⊄ SIZE[𝑛100]
[Kannan (1982)]

ZPPNP ⊄ SIZE[𝑛100]
[Köbler & Watanabe (1997)]

Conjecture: NP ⊄ P/poly
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Breakthrough from Algorithm Design

NEXP ⊄ ACC0

Theorem [Williams (2014)]

poly-size
constant-depth circuits 

with modulo gates

Proof Strategy

1st step: ∃(2𝑛/superpoly(𝑛))-time algorithm for ℂ-CKT-SAT 
 NEXP ⊄ ℂ

2nd step: (2𝑛/superpoly(𝑛))-time algorithm for ACC0-CKT-SAT

Given a circuit 𝐶 of class ℂ (e.g., P/poly, ACC0),
decide whether 𝐶 is satisfiable.
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AC0

x3

∧

x1 x2 x4

￢

∧∧

∨

∧

Gate set
= {AND, OR, NOT}

Constant Depth
（& poly-size）

unbounded
fan-in
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ACC0 (AC0 with counter)

x3

∧

x1 x2 x4

￢

∧∧

Modm

∨

Gate set
= {AND, OR, NOT, Modm }

Mod𝑚(𝑥) = 1
iff 𝑚 | 𝑤𝑡 𝑥

Constant Depth
（& poly-size）

unbounded
fan-in
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Breakthrough from Algorithm Design

NEXP ⊄ ACC0

Theorem [Williams (2014)]

Proof Strategy

1st step: ∃(2𝑛/superpoly(𝑛))-time algorithm for ℂ-CKT-SAT 
 NEXP ⊄ ℂ

2nd step: (2𝑛/superpoly(𝑛))-time algorithm for ACC0-CKT-SAT

Given a circuit 𝐶 of class ℂ (e.g., P/poly, ACC0),
decide whether 𝐶 is satisfiable.
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Non-trivially faster algorithm for ACC0∘THR-CKT-SAT (2nd step)

Breakthrough from Algorithm Design

NEXP ⊄ ACC0∘THR

Theorem [Williams (2018)]

ACC0 circuit + 
linear threshold gates 

at bottom layer

Improvement
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NEXP can be replaced with NQP (1st step)

Breakthrough from Algorithm Design

Improvement

NQP ⊄ ACC0∘THR

Theorem [Murray & Williams (2018)]

𝑛polylog 𝑛-time version of NP
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EXPSPACE

NEXP

EXP

PSPACE

Circuit Lower Bounds
for High Lower Bounds

PH
NQP
NP

P

MAEXP ⊄ P/poly
[Buhrman, Fortnow & Thierauf (1998)]

NEXP ⊄ ACC0∘THR
[Williams (2014, 2018)]

NQP ⊄ ACC0∘THR
[Murray & Williams (2018)]
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Overview

1. Circuit lower bounds in high complexity classes

2. Circuit lower bounds in low complexity classes

3. Quantum circuit lower bounds

4. Proof techniques for circuit lower bounds
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Circuit Lower Bounds 
for Low Complexity Classes

• Computational power of restricted circuits?

– Boolean formulas

• de Morgan formulas

• Formulas over full binary basis

– Low-depth (shallow) circuits

• constant-depth circuits

• 𝑂(log(𝑛))-depth circuits

33



Boolean Formula (de Morgan)

x1 x2

∨

Gate set = {∧, ∨} size = 8
depth = 3

fan-in = 2 fan-in = 2

∧

∧ ∨

∧

∧∨

x3¬x1 x4¬x2 x1x3

fan-out = 1
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Boolean Formula (Full Binary Basis)

x1 x2

∨

Gate set = {any binary func.} size = 8
depth = 3

∧

∧ ⊕

⊕

ഥ∧∨

x3¬x1 x4¬x2 x1x3
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Circuit Model (unbounded fan-in)

x3

∧

x1 x2 x4

￢

∨

∧

∨

Gate set = {∧, ∨, ￢}

fan-in = ∞ fan-in = ∞

∧

￢

∧

circuit model 
for constant-depth circuits
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Low-Depth Circuit Classes

• AC𝑖 = problems solved by 𝑂(log𝑖𝑛)-depth poly-size 
circuit of unbounded fan-in

• NC𝑖 (Nick’s Class) = problems solved by 𝑂(log𝑖𝑛)-
depth poly-size circuit of bounded fan-in

出典: https://www.hmc.edu/mathematics/people/faculty/nicholas-pippenger/

Nicholas Pippenger
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AC0

x3

∧

x1 x2 x4

￢

∧∧

∨

∧

Gate set
= {AND, OR, NOT}

Constant Depth
（& poly-size）

unbounded
fan-in
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Why Circuit Lower Bounds 
for Low Complexity Classes?

• Relaxation for circuit lower bounds
– Too difficult to prove lower bounds in general 

circuit models!

– Towards understanding of proof techniques in 
successful cases for weaker circuit models.

• P vs. NC1 conjecture
– Is every P problem parallelizable?

• NC1 problem is 𝑂(log(𝑛))-time solvable by parallel 
computation.

• poly-size Boolean formulas ≡ NC1 circuits
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Parity

Problem: Parity

Given: 𝑛-bit string 𝑥 ∈ {0,1}𝑛

Decide: #1 of 𝑥 is odd or not.
i.e., 𝑥1⊕𝑥2⊕⋯⊕𝑥𝑛 = 1?

Remark: Parity ∊ NC1

Some restricted circuits cannot compute Parity!
40



Formula Lower Bounds

LdM(Parity) ≥ 𝑛2

Theorem [Khrapchenko (1971)]

The lower bound of Parity for de Morgan formulas:

LdM(f) = size of minimum de Molgan formula computing f

41

It is known LdM(Parity) ≤ 𝑛2 [Tarui (2010)], i.e., the bound is tight.



Formula Lower Bounds

LdM(KR) = Ω
𝑛3

log 𝑛⋅ loglog 𝑛 2

Theorem [Tal (2017)]

The best known lower bound for de Morgan formulas:

KR: 0,1 𝑛 → 0,1 is some explicit function in P.
([Komargodski & Raz (2013)], [Komargodski, Raz & Tal (2013)])

LdM(f) = size of minimum de Molgan formula computing f
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Formula Lower Bounds

Lfull(ED) = Ω
𝑛2

log 𝑛

Theorem [Nechiporuk (1966)]

The best known lower bound for formulas over full binary basis:

Lfull(f) = size of minimum formula over full binary basis computing f

It is known Lfull(ED) = 𝑂(𝑛2/ log 𝑛), i.e., the bound is tight.
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AC0 circuit vs. Parity

Parity ∉ AC0

Theorem [Ajtai (1983), Furst, Saxe & Sipser (1984)] 

Parity ∉ AC0[Mod𝑝] for any prime 𝑝 > 2

Theorem [Smolensky (1987)] 

The power of AC0[Mod𝑚] was NOT known for a composite 𝑚
until Williams’ result NEXP⊄ACC0.
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Overview

1. Circuit lower bounds in high complexity classes

2. Circuit lower bounds in low complexity classes

3. Quantum circuit lower bounds

4. Proof techniques for circuit lower bounds

45



QAC0 circuit

input

target

ۧ|𝑥

ൿห0𝑚

ۧ|𝑓 𝑥

ancilla

Gate set = {arbitrary 1-qubit gate, (generalized) CNOT}

any 1-qubit 
gate

CNOT

low depth
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Can shallow quantum circuit 
compute Parity?

• Constant fan-in Q-circuit needs 𝑂(log 𝑛)
depth to compute Parity.

input ۧ|𝑥

ۧ|Parity(𝑥)

Depth-2 CNOT
can touch

≤ 22 = 4 input bits

Parity MUST touch 
all the 8 input bits!
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No depth-2 QAC0 circuit of unbounded ancilla qubits 
can compute Parity.

Quantum Circuit Lower Bounds 
for Parity

No depth-𝑜 log 𝑛 QAC0 circuit of 𝒐(𝒏) ancilla qubits 
can compute Parity.

Theorem [Fang, Fenner, Green & Zhang (2006)] 

Theorem [Pade, Fenner, Grier & Thierauf (2020)] 

Conjecture: 
No poly-size QAC0 circuit of unbounded ancilla
can compute Parity.
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Quantum Supremacy 
in Shallow circuits

∃search problem (named “2D hidden linear function”): 
- const-depth Q-circuit of bounded fan-in gates can solve,

- no 𝑜(log 𝑛)-depth circuit of bounded fan-in gates can solve.

Theorem [Bravyi, Gosset & Koenig (2018)] 

Improved by [Le Gall (2019)], [Coudron, Stark & Vidick (2018)], 
[Bene Watts, Kothari, Shaeffer & Tal (2019)]
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Overview

1. Circuit lower bounds in high complexity classes

2. Circuit lower bounds in low complexity classes

3. Quantum circuit lower bounds

4. Proof techniques for circuit lower bounds
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Techniques for Circuit Lower Bounds
in High Complexity Classes

• Karp-Lipton collapse argument

– Σ2P∩Π2P ⊄ SIZE[𝑛100] [Kannan (1982)]

– ZPPNP ⊄ SIZE[𝑛100] [Köbler & Watanabe (1997)]

• Algorithm design approaches

– Constructing non-trivially fast CKT-SAT algorithms 
[Williams (2013)]
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Generalization of NP
Class NP

𝐿 ∈ NP
𝑥 ∈ 𝐿

𝑥 ∉ 𝐿
Def

∃𝑤: 𝑅(𝑥, 𝑤) = 1
∀𝑤: 𝑅(𝑥, 𝑤) = 0

|𝑤| = poly(|𝑥|)
𝑅: poly-time comp.

e.g., SAT ∈ NP

𝜙 𝑥1, … , 𝑥𝑛 ∊ SAT ∃𝑎1, … , 𝑎𝑛 𝜙 𝑎1, … , 𝑎𝑛 = 1
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Generalization of NP

Class Σ2P

𝐿 ∈ Σ2P
𝑥 ∊ 𝐿

𝑥 ∉ 𝐿
Def

∃𝑤1∀𝑤2: 𝑅(𝑥, 𝑤1, 𝑤2) = 1
∀𝑤1∃𝑤2: 𝑅(𝑥, 𝑤1, 𝑤2) = 0

|𝑤1|, |𝑤2| = poly(|𝑥|)
R: poly-time comp.

e.g., Σ2SAT ∈ Σ2P

𝜙 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚 ∊ Σ2SAT

∃𝑎1, … , 𝑎𝑛, ∀𝑏1, … , 𝑏𝑛 𝜙 𝑎1, … , 𝑎𝑛, 𝑏1, … , 𝑏𝑚 = 1
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Generalization of NP

Class ΣkP

𝐿 ∈ Σ𝑘P

𝑥 ∊ 𝐿

𝑥 ∉ 𝐿

Def

∃𝑤1∀𝑤2⋯∃𝑤𝑘: 𝑅(𝑥, 𝑤1, … , 𝑤𝑘) = 1

|𝑤1|, … , |𝑤𝑘| = poly 𝑥
𝑅: poly-time comp.

∀𝑤1∃𝑤2⋯∀𝑤𝑘: 𝑅(𝑥, 𝑤1, … , 𝑤𝑘) = 0
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Polynomial-Time Hierarchy

Class PH

PH = ራ

𝑘∈ℕ

Σ𝑘P
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Karp-Lipton Collapse Argment

1. PH ⊄ SIZE[𝑛100]

2. Case-Analysis

1. NP ⊄ SIZE[𝑛300]  Done!

2. NP ⊂ SIZE[𝑛300]  By Karp-Lipton Theorem, 

PH collapses to some class : PH = ℂ.

Then, PH = ℂ ⊄ SIZE[𝑛100].
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PH has (superlinearly) hard problems.

No 𝑛100-size circuit can compute some Σ4P problem.

Theorem [Kannan (1982)]

Problem: HARD

Given: 𝑛-bit string 𝑥 ∈ {0,1}𝑛

Decide: 𝑓HARD(𝑥) = 1?
𝑓HARD is function which 

no 𝑛100-size circuit can compute.

Caveat: This is not precise definition, which is complicated from technical reasons.

∀𝐶 ∈ 𝑛100−size circuit
∃𝑧 ∈ {0,1}𝑛: 

𝐶(𝑧) ≠ 𝑓HARD(𝑧)
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Argument for CLBs

Collapse of PH

Some 𝑛300-size circuit 𝐶∗ can compute SAT 
and 𝐶∗ can be simulated by class-ℂ computation

 PH = ℂ

Theorem [Karp & Lipton (1982)]

Case 1
SAT has no 𝑛300-size circuit  NP ⊄ SIZE[𝑛300]

Case 2

SAT has 𝑛300-size circuit 𝐶∗ PH = ℂ ⊄ SIZE[𝑛100] 
if 𝑪∗ can be simulated in ℂ!58



Circuit Lower Bounds 
from Karp-Lipton Collapse Argments

No 𝑛100-size circuit can compute some Σ2P∩Π2P problem.

Theorem [Kannan (1982)]

No 𝑛100-size circuit can compute some ZPPNP problem.

Theorem [Köbler & Watanabe (1997)]
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Techniques for Circuit Lower Bounds

• Random restriction [Furst, Saxe, & Sipser (1984)]
– Parity ∉ AC0

– Variant applies to quantum circuit lower bound for 
Parity [Fang, Fenner, Green, Homer & Zhang (2003)]

• Razborov-Smolensky argument [Razborov (1987), 
Smolensky (1987)]

– Parity ∉ AC0

• Parity 𝑥1, … , 𝑥𝑛 = 𝑥1 ⊕⋯⊕ 𝑥𝑛

– Parity ∉ AC0 Mod3
• AC0[Mod3] = AC0 that allows Mod3 gates
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Razborov-Smolensky Argument

1. Parity: +1,−1 𝑛 → +1,−1 (in Fourier basis) is high-deg
poly. 

Parity 𝑥1, … , 𝑥𝑛 = 𝑥1𝑥2⋯𝑥𝑛

2. AC0 circuit is well-approximable by low-deg poly.
(Domain conversion is easy: 𝑥’ = 2𝑥 − 1 for 𝑥 ∈ 0,1 , 𝑥’ ∈ +1,−1 )

3. Suppose AC0 circuit can compute Parity.

 Parity has impossibly good approx. 

w/ low-deg poly. 

Contradiction!

Note: this can show Parity ∉ AC0[Mod3], too.
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Polynomial Representations

• Polynomial representations (over 0,1 𝑛)
– AND 𝑥1, , … , 𝑥𝑛 = 𝑥1⋯𝑥𝑛
– OR 𝑥1, , … , 𝑥𝑛 = 1 − 1 − 𝑥1 ⋯ 1 − 𝑥𝑛

• 1 − 𝜖 -approx. polynomial representations

– Random subset {𝑥𝑖1 , … , 𝑥𝑖𝑚} of size 𝑚 = 𝜖−1 log 𝑛

– ෫AND 𝑥1, , … , 𝑥𝑛 = 𝑥𝑖1⋯𝑥𝑖𝑚

– ෪OR 𝑥1, , … , 𝑥𝑛 = 1 − 1 − 𝑥𝑖1 ⋯ 1 − 𝑥𝑖𝑚

• Pr AND 𝑥 ≠ ෫AND 𝑥 ≤ 𝜖

• Pr AND OR 𝑥 ,… ≠ ෫AND ෪OR 𝑥 ,… ≤ 2𝜖

• Depth-𝑑 𝑠-size circuit can be Ω 1 -approximated                                          

by deg-𝑂 log 𝑠 2𝑑 polynomial. 

degree 𝑛

degree 𝜖−1 log 𝑛

degree 𝜖−1 log 𝑛 2
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Algorithm Design Approaches

• [Williams (2010, 2014), Murray & Williams (2018)]
– Constructing fast algorithms for CKT-SAT yields CLBs!

• [Impagliazzo & Kabanets (2004), Gutfreund & K (2010)]
– Derandomizing some randomized algorithms yields CLBs!

• [Kabanets et al. (2013)]
– Compressing truth tables yields CLBs!

• [Fortnow & Klivans (2004), Klivans et al. (2013)]
– Constructing good learning algorithms yields CLBs!
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Concluding Remarks

• See my survey papers:
– K, “Proving Circuit Lower Bounds in High Uniform 

Classes,” Interdisciplinary Information Sciences 20(1): 
1-26, 2014.

– K, “Circuit Lower Bounds from Learning-theoretic 
Approaches,” Theoretical Computer Science, 733: 83-
98, 2018.

• New techniques beyond barrier results?
– Relativization barrier [Baker, Gill & Solovay (1975)]
– Natural-proof barrier [Razborov & Rudich (1997)]
– Algebrization barrier [Aaronson & Wigderson (2009)]

64


