（量子）回路計算量の下界証明

河内 亮周
Akinori KAWACHI
三重大学

京都大学基礎物理学研究所 量子情報ユニット第3回量子情報スクール 2020年6月30日（火）

Overview

1. Circuit lower bounds in high complexity classes
2. Circuit lower bounds in low complexity classes
3. Quantum circuit lower bounds
4. Proof techniques for circuit lower bounds

Circuit Model (bounded fan-in)

Gate set $=\{\Lambda, \vee, \neg\}$
fan-in $=2 \quad$ fan-in $=2$
size $=6$
depth $=4$

Circuit Model (unbounded fan-in)

Gate set $=\{\wedge, \vee, \neg\}$

Circuit Complexity

Circuit Complexity

A problem L has circuit complexity $s(n)$
= necessary and sufficient size of circuits
that computes L on every input length n

Constructing circuits of size $s(n)$ for $L \rightarrow$ circuit upper bounds $s(n)$
Proving no circuit of size $s(n)$ for $L \rightarrow$ circuit lower bounds $s(n)$

Overview

1. Circuit lower bounds in high complexity classes 2. Circuit lower bounds in low complexity classes 3. Quantum circuit lower bounds 4. Proof techniques for circuit lower bounds

Why Circuit Lower Bounds in High Complexity Classes?

Implications of Circuit Lower Bounds

Major Strategy towards NP vs. P

Proving circuit lower bounds for class NP:

No poly-size circuit can compute some NP problem
solved by
poly-size circuits
\approx class P
$N P \neq P$
$(N P \not \subset P /$ poly $\rightarrow N P \neq P)$

Implications of Circuit Lower Bounds

Universal derandomization of randomized algorithms

Stay tuned for the next session of Shuichi's talk!

Complexity Classes

- Focus on "decision pro' ${ }_{\text {polynomial-time (e.g. } n^{2} \text { "time) }}$ - Answer = Yes or No in input length n
- $P=$ problems which can be solved efficiently by deterministic classical algorithms (formally, Turing machines).
- NP = problems whose "witnesses" can be verified efficiently by deterministic classical algorithms.
algorithm = deterministic classical algorithm (unless specified otherwise)

Complexity Classes

- $P /$ poly = problems solved efficiently by classical circuits.
- P c P/poly

polynomial-size
 in input length n

- SIZE[$s(n)]=$ problems solved by $s(n)$-size classical circuits.
- P/poly = SIZE[poly(n)]

Recap: class NP

- NP = problems whose "witnesses" can be verified by efficient algorithms.

Problem: N is divided by $<M$?

Recap: class NP

- NP = problems whose "witnesses" can be If "Noifind hu infficient algorithms.
If "No" instance
no witness
$1396763=1163 \times 1201 \mathrm{~m}: N$ is divided by $<M$?

Recap: class NP

Class NP

$L \in$ NP

$$
\begin{aligned}
& x \in L \Longleftrightarrow \exists w: V(x, w)=1 \\
& x \notin L \Longleftrightarrow \forall w: V(x, w)=0
\end{aligned}
$$

$$
|w|=\operatorname{poly}(|x|)
$$

V : poly-time algorithm

Recap: NP-complete problem

Problem: SAT

Given: Boolean formula $\phi\left(x_{1}, \ldots, x_{n}\right)$
Decide: ϕ is satisfiable?

$$
\exists\left(a_{1} \cdots a_{n}\right) \in\{0,1\}^{n}: \phi\left(a_{1}, \ldots, a_{n}\right)=1 ?
$$

$x_{1} \wedge x_{2} \in \operatorname{SAT}\left(x_{1}=1, x_{2}=1\right)$
$x_{1} \wedge \neg x_{1} \notin$ SAT

- SAT is NP-complete problem
$-S A T \in P \rightarrow N P=P$
- SAT is the "hardest" in NP.

Circuit Lower Bounds for NP

The best circuit lower bound is:
Theorem [Iwama, Lachish, Morizumi \& Raz (2005)]

$$
\text { NP } \not \subset \text { SIZE[5n] }
$$

Only linear lower bounds!

We can't yet exclude the possibility
NP-complete problems could be solved by $\mathbf{6 n}$-size circuit!

Relaxation:

$>$ superlinear circuit lower bounds
$>$ circuit lower bounds in higher classes than NP

Superlinear Circuit Lower Bounds in High Complexity Classes

Superpolynomial Lower Bounds

EXPSPAC [Buhrman, Fortnow \& Thierauf (1998)]

Complexity Classes

- PH (Polynomial-time Hierarchy) $=\mathrm{NP}^{\mathrm{NP}}{ }^{\mathrm{NP} \cdots}$
- Generalization of class NP.
- c.f. $\boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{P}=N P^{N P}=$ problems verified by polynomial-time algorithms with NP oracle
- NP oracle = black box solving any NP problem in 1 step.
- PSPACE = problems solved by polynomialspace (poly (n)-space) algorithms.
- No time bounds.

Complexity Classes

- EXP = problems solved by exponential-time (2 $2^{\text {poly(} n)}$-time) algorithms.
- Exponential-time analogue of class P
- NEXP = problems verified by exponential-time algorithms.
- Exponential-time analogue of class NP
- EXPSPACE = problems solved by exponentialspace ($2^{\text {poly }(n)}$-space) algorithms.
- Exponential-space analogue of class PSPACE

Circuit Lower Bounds

in High Compley ${ }^{\text {in.. Tlo...an }}$
EXPSPAC [Buhrman, Fortnow \& Thierauf (1998)]

Complexity Classes

- $\Sigma_{2} P=N P^{N P}, \Pi_{2} P=$ complement class of $\Sigma_{2} P$
- ZPP (Zero-error Probabilistic Polynomial-time) = problems solved by expected polynomialtime randomized algorithm with zero error
- \quad ZPP ${ }^{N P}=$ problems solved by expected polynomial-time randomized algorithm with zero error with NP oracle

Complexity Classes

- MA (Merlin-Arthur) = problems which can be verified by polynomial-time randomized algorithms with high probability.
- Randomized analogue of class NP
- $\mathrm{MA}_{\text {EXP }}=$ problems which can be verified by exponential-time randomized algorithms with high probability.
- Exponential-time analogue of class MA

Circuit Lower Bounds

in High Lower n-....al

$$
\mathrm{MA}_{\mathrm{EXP}} \not \subset \mathrm{P} / \text { poly }
$$

EXPSPAC [Buhrman, Fortnow \& Thierauf (1998)]

NEXP
EXP
PSPACE
$\Sigma_{2} \mathrm{P} \cap \Pi_{2} \mathrm{P} \not \subset \mathrm{SIZE}\left[n^{100}\right]$
[Kannan (1982)]

NP
P
Conjecture: NP $\not \subset \mathrm{P} /$ poly

Breakthrough from Algorithm Design

poly-size

Theorem [Williams (2014)]

constant-depth circuits with modulo gates
NEXP $\not \subset$ ACC 0

Given a circuit C of class \mathbb{C} (e.g., P/poly, ACC^{0}), decide whether C is satisfiable.
$1^{\text {st }}$ step: $\exists\left(2^{n} /\right.$ superpoly $\left.(n)\right)$-time algorithm for \mathbb{C}-CKT-SAT
\rightarrow NEXP $\not \subset \mathbb{C}$
$2^{\text {nd }}$ step: $\left(2^{n} /\right.$ superpoly $\left.(n)\right)$-time algorithm for ACC ${ }^{0}-$ CKT-SAT
$A C^{0}$

Gate set
 = \{AND, OR, NOT $\}$
 R, NOT $\}$

Breakthrough from Algorithm Design

Theorem [Williams (2014)]

NEXP $\not \subset$ ACC 0

Given a circuit C of class $\mathbb{C}\left(\right.$ e.g., P/poly, $\left.\mathrm{ACC}^{0}\right)$, decide whether C is satisfiable.
$1^{\text {st }}$ step: $\exists\left(2^{n} /\right.$ superpoly $\left.(n)\right)$-time algorithm for \mathbb{C}-CKT-SAT
\rightarrow NEXP $\not \subset \mathbb{C}$
$2^{\text {nd }}$ step: $\left(2^{n} /\right.$ superpoly $\left.(n)\right)$-time algorithm for ACC 0-CKT-SAT

Breakthrough from Algorithm Design

ACC ${ }^{0}$ circuit +
linear threshold gates at bottom layer
NEXP $\not \subset$ ACC $^{0} \circ$ THR

Improvement

Non-trivially faster algorithm for ACC ${ }^{0} \circ$ THR-CKT-SAT (2 ${ }^{\text {nd }}$ step)

Breakthrough from Algorithm Design

Theorem [Murray \& Williams (2018)]

NQP $\not \subset A C C^{0} \circ$ THR

$n^{\text {polylog } n}$-time version of NP

Improvement

NEXP can be replaced with NQP ($1^{\text {st }}$ step)

Circuit Lower Bounds

 for High Lowe ${ }^{-n}$ $\mathrm{MA}_{\text {EXP }} \not \subset \mathrm{P} /$ polyEXPSPAC [Buhrman, Fortnow \& Thierauf (1998)]

NEXP
 EXP NEXP $\not \subset A C C{ }^{\circ} \circ$ THR

 [Williams $(2014,2018)]$PSPACE

NP
P
NQP $\not \subset$ ACC $^{0} \circ$ THR
[Murray \& Williams (2018)]

Overview

1. Circuit lower bounds in high complexity classes
2. Circuit lower bounds in low complexity classes
3. Quantum circuit lower bounds
4. Proof techniques for circuit lower bounds

Circuit Lower Bounds for Low Complexity Classes

- Computational power of restricted circuits?
- Boolean formulas
- de Morgan formulas
- Formulas over full binary basis
- Low-depth (shallow) circuits
- constant-depth circuits
- $O(\log (n))$-depth circuits

Boolean Formula (de Morgan)

Boolean Formula (Full Binary Basis)

Gate set $=$ \{any binary func. $\}$

size $=8$

Circuit Model (unbounded fan-in)

Gate set $=\{\wedge, \vee, \neg\}$

circuit model
for constant-depth circuits

Low-Depth Circuit Classes

- $\mathrm{AC}^{i}=$ problems solved by $O\left(\log ^{i} n\right)$-depth poly-size circuit of unbounded fan-in
- NC^{i} (Nick's Class) $=$ problems solved by $O\left(\log ^{i} n\right)$ depth poly-size circuit of bounded fan-in

Nicholas Pippenger
出典: https://www.hmc.edu/mathematics/people/faculty/nicholas-pippenger/
$A C^{0}$

Gate set
 = \{AND, OR, NOT $\}$
 R, NOT $\}$

Why Circuit Lower Bounds for Low Complexity Classes?

- Relaxation for circuit lower bounds
- Too difficult to prove lower bounds in general circuit models!
- Towards understanding of proof techniques in successful cases for weaker circuit models.
- P vs. NC ${ }^{1}$ conjecture
- Is every P problem parallelizable?
- NC^{1} problem is $O(\log (n))$-time solvable by parallel computation.
- poly-size Boolean formulas $\equiv \mathrm{NC}^{1}$ circuits

Parity

Problem: Parity

Given: n-bit string $x \in\{0,1\}^{n}$
Decide: \#1 of x is odd or not.

$$
\text { i.e., } x_{1} \oplus x_{2} \oplus \cdots \bigoplus x_{n}=1 \text { ? }
$$

Remark: Parity $\in \mathrm{NC}^{1}$

Some restricted circuits cannot compute Parity!

Formula Lower Bounds

The lower bound of Parity for de Morgan formulas:

Theorem [Khrapchenko (1971)]

$$
\mathrm{L}_{\mathrm{dm}}(\text { Parity }) \geq n^{2}
$$

$L_{d M}(f)=$ size of minimum de Molgan formula computing f

It is known $L_{d M}$ (Parity) $\leq n^{2}$ [Tarui (2010)], i.e., the bound is tight.

Formula Lower Bounds

The best known lower bound for de Morgan formulas:

Theorem [Tal (2017)]

$$
\mathrm{L}_{\mathrm{dM}}(\mathrm{KR})=\Omega\left(\frac{n^{3}}{\log n \cdot(\log \log n)^{2}}\right)
$$

$L_{d M}(f)=$ size of minimum de Molgan formula computing f
$K R:\{0,1\}^{n} \rightarrow\{0,1\}$ is some explicit function in P. ([Komargodski \& Raz (2013)], [Komargodski, Raz \& Tal (2013)])

Formula Lower Bounds

The best known lower bound for formulas over full binary basis:

Theorem [Nechiporuk (1966)]

$$
\mathrm{L}_{\text {full }}(\mathrm{ED})=\Omega\left(\frac{n^{2}}{\log n}\right)
$$

$L_{\text {full }}(f)=$ size of minimum formula over full binary basis computing f

It is known $\mathrm{L}_{\text {full }}(E D)=O\left(n^{2} / \log n\right)$, i.e., the bound is tight.

AC^{0} circuit vs. Parity

Theorem [Ajtai (1983), Furst, Saxe \& Sipser (1984)]

Parity $\notin A C^{0}$

Theorem [Smolensky (1987)]

Parity $\notin A C^{0}\left[\operatorname{Mod}_{p}\right]$ for any prime $p>2$

The power of $A C^{0}\left[\operatorname{Mod}_{m}\right]$ was NOT known for a composite m until Williams' result NEXP $\not \subset A C C^{0}$.

Overview

1. Circuit lower bounds in high complexity classes
2. Circuit Iower bounds in Iow complexity classes
3. Quantum circuit lower bounds
4. Proof techniques for circuit lower bounds

QAC ${ }^{0}$ circuit

Gate set $=$ \{arbitrary 1-qubit gate, (generalized) CNOT $\}$

Can shallow quantum circuit compute Parity?

- Constant fan-in Q-circuit needs O (lo Depth-2 cNot depth to compute Parity can touch

Quantum Circuit Lower Bounds for Parity

Conjecture:
No poly-size QAC 0 circuit of unbounded ancilla can compute Parity.

Theorem [Fang, Fenner, Green \& Zhang (2006)]
No depth-o($\log n)$ QAC 0 circuit of $\boldsymbol{o}(\boldsymbol{n})$ ancilla qubits can compute Parity.

Theorem [Pade, Fenner, Grier \& Thierauf (2020)]
No depth-2 QAC ${ }^{0}$ circuit of unbounded ancilla qubits can compute Parity.

Quantum Supremacy in Shallow circuits

Theorem [Bravyi, Gosset \& Koenig (2018)]

\exists search problem (named " 2 D hidden linear function"):

- const-depth Q-circuit of bounded fan-in gates can solve,
- no $o(\log n)$-depth circuit of bounded fan-in gates can solve.

Improved by [Le Gall (2019)], [Coudron, Stark \& Vidick (2018)], [Bene Watts, Kothari, Shaeffer \& Tal (2019)]

Overview

1. Circuit lower bounds in high complexity classes
2. Circuit lower bounds in low complexity classes
3. Quantum circuit lower bounds
4. Proof techniques for circuit lower bounds

Techniques for Circuit Lower Bounds in High Complexity Classes

- Karp-Lipton collapse argument
$-\Sigma^{2} \mathrm{P} \cap \Pi^{2} \mathrm{P} \not \subset \mathrm{SIZE}\left[n^{100}\right.$] [Kannan (1982)]
- ZPP ${ }^{N P} \not \subset$ SIZE[n^{100}] [Köbler \& Watanabe (1997)]
- Algorithm design approaches
- Constructing non-trivially fast CKT-SAT algorithms [Williams (2013)]

Generalization of NP

Class NP

$$
\begin{aligned}
& L \in \mathrm{NP} \\
& \qquad \begin{array}{l}
x \in L \\
x \notin L
\end{array} \exists w: R(x, w)=1 \\
& \forall w: R(x, w)=0 \\
&|w|=\text { poly }(|x|) \\
& R: \text { poly-time comp. }
\end{aligned}
$$

e.g., SAT \in NP
$\phi\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{SAT} \Leftrightarrow \exists a_{1}, \ldots, a_{n} \phi\left(a_{1}, \ldots, a_{n}\right)=1$

Generalization of NP

Class Σ_{2} P

$L \in \Sigma_{2} \mathrm{P}$

$$
\begin{gathered}
x \in L \Rightarrow \exists w_{1} \forall w_{2}: R\left(x, w_{1}, w_{2}\right)=1 \\
x \notin L \Rightarrow \forall w_{1} \exists w_{2}: R\left(x, w_{1}, w_{2}\right)=0 \\
\left|w_{1}\right|,\left|w_{2}\right|=\text { poly }(|x|) \\
\text { R: poly-time comp. }
\end{gathered}
$$

e.g., Σ_{2} SAT $\in \Sigma_{2} \mathrm{P}$
$\phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \in \Sigma_{2}$ SAT
$\exists a_{1}, \ldots, a_{n}, \forall b_{1}, \ldots, b_{n} \phi\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right)=1$

Generalization of NP

Class $\Sigma_{k} \mathrm{P}$

$L \in \Sigma_{k} \mathrm{P}$

옥 $x \in L$
$\exists w_{1} \forall w_{2} \cdots \exists w_{k}: R\left(x, w_{1}, \ldots, w_{k}\right)=1$
$x \notin L$
$\forall w_{1} \exists w_{2} \cdots \forall w_{k}: R\left(x, w_{1}, \ldots, w_{k}\right)=0$
$\left|w_{1}\right|, \ldots,\left|w_{k}\right|=\operatorname{poly}(|x|)$ R : poly-time comp.

Polynomial-Time Hierarchy

Class PH

$$
\mathrm{PH}=\bigcup_{k \in \mathbb{N}} \Sigma_{k} \mathrm{P}
$$

Karp-Lipton Collapse Argment

1. PH $\not \subset \operatorname{SIZE}\left[n^{100}\right]$
2. Case-Analysis
3. NP $\not \subset \mathrm{SIZE}\left[n^{300}\right] \rightarrow$ Done!
4. NP $\subset \mathrm{SIZE}\left[n^{300}\right] \rightarrow$ By Karp-Lipton Theorem, PH collapses to some class: $\mathrm{PH}=\mathbb{C}$.
Then, PH = C $\not \subset \operatorname{SIZE}\left[n^{100}\right]$.

PH has (superlinearly) hard problems.

Theorem [Kannan (1982)]

No n^{100}-size circuit can compute some $\Sigma^{4} \mathrm{P}$ problem.

Problem: HARD

Given: n-bit string $x \in\{0$,

$\forall C \in\left\{n^{100}\right.$-size circuit $\}$

$\exists z \in\{0,1\}^{n}:$
Decide: $f_{\text {HARD }}(x)=1$?
$f_{\text {HARD }}$ is function which
no n^{100}-size circuit can compute.
Caveat: This is not precise definition, which is complicated from technical reasons.

Collapse of PH

Theorem [Karp \& Lipton (1982)]

Some n^{300}-size circuit C^{*} can compute SAT and C^{*} can be simulated by class- \mathbb{C} computation

$$
\rightarrow \mathrm{PH}=\mathbb{C}
$$

Argument for CLBs

Case 1

SAT has no n^{300}-size circuit \rightarrow NP $\not \subset$ SIZE $\left[n^{300}\right]$

Case 2

SAT has n^{300}-size circuit $C^{*} \rightarrow \mathrm{PH}=\mathbb{C} \not \subset$ SIZE $\left[n^{100}\right]$ if \boldsymbol{C}^{*} can be simulated in $\mathbb{C}!_{58}$

Circuit Lower Bounds

 from Karp-Lipton Collapse Argments
Theorem [Kannan (1982)]

No n^{100}-size circuit can compute some $\Sigma^{2} \mathrm{P} \cap \Pi^{2} \mathrm{P}$ problem.

Theorem [Köbler \& Watanabe (1997)]

No n^{100}-size circuit can compute some ZPPNP problem.

Techniques for Circuit Lower Bounds

- Random restriction [Furst, Saxe, \& Sipser (1984)]
- Parity $\notin \mathrm{AC}^{0}$
- Variant applies to quantum circuit lower bound for Parity [Fang, Fenner, Green, Homer \& Zhang (2003)]
- Razborov-Smolensky argument [Razborov (1987), Smolensky (1987)]
- Parity $\notin \mathrm{AC}^{0}$
- Parity $\left(x_{1}, \ldots, x_{n}\right)=x_{1} \oplus \cdots \oplus x_{n}$
- Parity $\notin \mathrm{AC}^{0}\left[\operatorname{Mod}_{3}\right]$
- $\mathrm{AC}^{0}\left[\operatorname{Mod}_{3}\right]=\mathrm{AC}$ that allows Mod_{3} gates

Razborov-Smolensky Argument

1. Parity: $\{+1,-1\}^{n} \rightarrow\{+1,-1\}$ (in Fourier basis) is high-deg poly.

$$
\operatorname{Parity}\left(x_{1}, \ldots, x_{n}\right)=x_{1} x_{2} \cdots x_{n}
$$

2. AC^{0} circuit is well-approximable by low-deg poly. (Domain conversion is easy: $x^{\prime}=2 x-1$ for $x \in\{0,1\}, x^{\prime} \in\{+1,-1\}$)
3. Suppose AC^{0} circuit can compute Parity.
\rightarrow Parity has impossibly good approx. w/ low-deg poly.

Contradiction!

Note: this can show Parity $\notin \mathrm{AC}^{0}\left[\operatorname{Mod}_{3}\right]$, too.

Polynomial Representations

- Polynomial representations (over $\{0,1\}^{n}$)

$$
\begin{aligned}
& -\operatorname{AND}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \cdots x_{n} \\
& -\operatorname{OR}\left(x_{1}, \ldots, x_{n}\right)=1-\left(1-x_{1}\right) \cdots\left(1-x_{n}\right)
\end{aligned}
$$

- $(1-\epsilon)$-approx. polynomial representations
- Random subset $\left\{x_{i_{1}}, \ldots, x_{i_{m}}\right\}$ of size $m=\epsilon^{-1} \log n$
$-\widehat{\operatorname{AND}}\left(x_{1}, \ldots, x_{n}\right)=x_{i_{1}} \cdots x_{i_{m}}$
$-\widetilde{\mathrm{OR}}\left(x_{1}, \ldots, x_{n}\right)=1-\left(1-x_{i_{1}}\right) \cdots\left(1-x_{i_{m}}\right)$

degree $\epsilon^{-1} \log n$

- $\operatorname{Pr}[\operatorname{AND}(x) \neq \widetilde{\operatorname{AND}}(x)] \leq \epsilon \quad$ degree $\left(\epsilon^{-1} \log n\right)^{2}$
- $\operatorname{Pr}[\operatorname{AND}(\operatorname{OR}(x), \ldots) \neq \widetilde{\operatorname{AND}}(\widetilde{\mathrm{OR}}(x), \ldots)] \leq 2 \epsilon$
- Depth- $d s$-size circuit can be $\Omega(1)$-approximated by deg-O $\left((\log s)^{2 d}\right)$ polynomial.

Algorithm Design Approaches

- [Williams (2010, 2014), Murray \& Williams (2018)]
- Constructing fast algorithms for CKT-SAT yields CLBs!
- [Impagliazzo \& Kabanets (2004), Gutfreund \& K (2010)]
- Derandomizing some randomized algorithms yields CLBs!
- [Kabanets et al. (2013)]
- Compressing truth tables yields CLBs!
- [Fortnow \& Klivans (2004), Klivans et al. (2013)]
- Constructing good learning algorithms yields CLBs!

Concluding Remarks

- See my survey papers:
- K, "Proving Circuit Lower Bounds in High Uniform Classes," Interdisciplinary Information Sciences 20(1): 1-26, 2014.
- K, "Circuit Lower Bounds from Learning-theoretic Approaches," Theoretical Computer Science, 733: 8398, 2018.
- New techniques beyond barrier results?
- Relativization barrier [Baker, Gill \& Solovay (1975)]
- Natural-proof barrier [Razborov \& Rudich (1997)]
- Algebrization barrier [Aaronson \& Wigderson (2009)]

