(量子)回路計算量の下界証明

河内 亮周 Akinori KAWACHI 三重大学

> 京都大学基礎物理学研究所 量子情報ユニット 第3回量子情報スクール 2020年6月30日(火)

Overview

- 1. Circuit lower bounds in high complexity classes
- 2. Circuit lower bounds in low complexity classes
- 3. Quantum circuit lower bounds
- 4. Proof techniques for circuit lower bounds

Circuit Model (bounded fan-in)

Circuit Model (unbounded fan-in)

Circuit Complexity

Circuit Complexity

A problem L has circuit complexity s(n)= necessary and sufficient size of circuits that computes L on every input length n

Constructing circuits of size s(n) for $L \rightarrow$ circuit upper bounds s(n)

Proving no circuit of size s(n) for $L \rightarrow$ circuit lower bounds s(n)

Overview

- 1. Circuit lower bounds in high complexity classes
- 2. Circuit lower bounds in low complexity classes
- 3. Quantum circuit lower bounds
- 4. Proof techniques for circuit lower bounds

Why Circuit Lower Bounds in High Complexity Classes?

Implications of Circuit Lower Bounds

Major Strategy towards NP vs. P

Proving circuit lower bounds for class NP:

No poly-size circuit can compute some NP problem

solved by poly-size circuits \approx class P $(NP \not\subset P/poly \rightarrow NP \neq P)$

Implications of Circuit Lower Bounds

Universal derandomization of randomized algorithms

Stay tuned for the next session of Shuichi's talk!

- Focus on "decision pro polynomial-time (e.g. n²-time) in input length n
- P = problems which can be solved efficiently by deterministic classical algorithms (formally, Turing machines).
- NP = problems whose "witnesses" can be verified efficiently by deterministic classical algorithms.

algorithm = deterministic classical algorithm (unless specified otherwise) "

 P/poly = problems solved efficiently by classical circuits. polynomial-size

 $-P \subsetneq P/poly$

in input length n

• SIZE[s(n)] = problems solved by s(n)-size classical circuits.

- P/poly = SIZE[poly(n)]

circuit = deterministic classical circuit (unless specified otherwise)

Recap: class NP

NP = problems whose "witnesses" can be verified by efficient algorithms.

Recap: class NP

Recap: class NP

Recap: NP-complete problem

Problem: SAT

Given: Boolean formula $\phi(x_1, ..., x_n)$ Decide: ϕ is satisfiable? $\exists (a_1 \cdots a_n) \in \{0,1\}^n : \phi(a_1, ..., a_n) = 1$?

$$x_1 \land x_2 \in \text{SAT} (x_1 = 1, x_2 = 1)$$

$$x_1 \land \neg x_1 \notin \text{SAT}$$

• SAT is NP-complete problem

 $-SAT \in P \rightarrow NP = P$

SAT is the "hardest" in NP.

Circuit Lower Bounds for NP

The best circuit lower bound is:

Theorem [Iwama, Lachish, Morizumi & Raz (2005)]

NP $\not\subset$ SIZE[5*n*]

Only linear lower bounds!

We can't yet exclude the possibility

NP-complete problems could be solved by **6n-size** circuit!

Relaxation:

superlinear circuit lower bounds

circuit lower bounds in higher classes than NP

Superlinear Circuit Lower Bounds in High Complexity Classes

• **PH** (Polynomial-time Hierarchy) = NP^{NP^{NP···}}

- Generalization of class NP.

- c.f. $\Sigma_2 P = NP^{NP}$ = problems verified by polynomial-time algorithms with NP oracle
 - NP oracle = black box solving any NP problem in 1 step.
- PSPACE = problems solved by polynomialspace (poly(n)-space) algorithms.

No time bounds.

- EXP = problems solved by exponential-time (2^{poly(n)}-time) algorithms.
 - Exponential-time analogue of class P
- NEXP = problems verified by exponential-time algorithms.
 - Exponential-time analogue of class NP
- EXPSPACE = problems solved by exponentialspace (2^{poly(n)}-space) algorithms.
 - Exponential-space analogue of class PSPACE

- $\Sigma_2 \mathbf{P} = \mathbf{N}\mathbf{P}^{\mathbf{N}\mathbf{P}}$, $\Pi_2 \mathbf{P} = \text{complement class of } \Sigma_2 \mathbf{P}$
- ZPP (Zero-error Probabilistic Polynomial-time)
 = problems solved by expected polynomialtime randomized algorithm with zero error
- ZPP^{NP} = problems solved by expected polynomial-time randomized algorithm with zero error with NP oracle

 MA (Merlin-Arthur) = problems which can be verified by polynomial-time randomized algorithms with high probability.

Randomized analogue of class NP

- MA_{EXP} = problems which can be verified by exponential-time randomized algorithms with high probability.
 - Exponential-time analogue of class MA

Breakthrough from Algorithm Design

Theorem [Williams (2014)]

$\mathsf{NEXP} \not\subset \mathsf{ACC}^0$

Improvement

Non-trivially faster algorithm for ACC⁰oTHR-CKT-SAT (2nd step)

Breakthrough from Algorithm Design

Overview

- 1. Circuit lower bounds in high complexity classes
- 2. Circuit lower bounds in low complexity classes
- 3. Quantum circuit lower bounds
- 4. Proof techniques for circuit lower bounds

Circuit Lower Bounds for Low Complexity Classes

- Computational power of restricted circuits?
 - Boolean formulas
 - de Morgan formulas
 - Formulas over full binary basis
 - Low-depth (shallow) circuits
 - constant-depth circuits
 - $O(\log(n))$ -depth circuits

Circuit Model (unbounded fan-in)

Low-Depth Circuit Classes

- ACⁱ = problems solved by O(logⁱn)-depth poly-size circuit of unbounded fan-in
- NCⁱ (Nick's Class) = problems solved by O(logⁱn) depth poly-size circuit of bounded fan-in

Nicholas Pippenger

出典: <u>https://www.hmc.edu/mathematics/people/faculty/nicholas-pippenger/</u>

Why Circuit Lower Bounds for Low Complexity Classes?

- Relaxation for circuit lower bounds
 - Too difficult to prove lower bounds in general circuit models!
 - Towards understanding of proof techniques in successful cases for weaker circuit models.
- P vs. NC¹ conjecture
 - Is every P problem parallelizable?
 - NC¹ problem is O(log(n))-time solvable by parallel computation.
 - poly-size Boolean formulas $\equiv NC^1$ circuits

Parity

Problem: Parity

Given: *n*-bit string $x \in \{0,1\}^n$ Decide: #1 of x is odd or not. i.e., $x_1 \bigoplus x_2 \bigoplus \cdots \bigoplus x_n = 1$?

Remark: Parity $\in NC^1$

Some restricted circuits cannot compute Parity!

Formula Lower Bounds

The lower bound of Parity for de Morgan formulas:

 $L_{dM}(f)$ = size of minimum de Molgan formula computing f

It is known L_{dM} (Parity) $\leq n^2$ [Tarui (2010)], i.e., the bound is tight.

Formula Lower Bounds

The best known lower bound for de Morgan formulas:

Theorem [Tal (2017)] $L_{dM}(KR) = \Omega\left(\frac{n^3}{\log n \cdot (\log\log n)^2}\right)$

 $L_{dM}(f) = size of minimum de Molgan formula computing f$ $KR: \{0,1\}^n \rightarrow \{0,1\}$ is some explicit function in P. ([Komargodski & Raz (2013)], [Komargodski, Raz & Tal (2013)])

Formula Lower Bounds

The best known lower bound for formulas over full binary basis:

Theorem [Nechiporuk (1966)]
$$L_{full}(ED) = \Omega\left(\frac{n^2}{\log n}\right)$$

L_{full}(f) = size of minimum formula over full binary basis computing f

It is known $L_{full}(ED) = O(n^2 / \log n)$, i.e., the bound is tight.

AC⁰ circuit vs. Parity

Theorem [Ajtai (1983), Furst, Saxe & Sipser (1984)]

Parity $\notin AC^0$

Theorem [Smolensky (1987)]

Parity $\notin AC^0[Mod_p]$ for any prime p > 2

The power of $AC^0[Mod_m]$ was NOT known for a composite m until Williams' result NEXP $\not\subset ACC^0$.

Overview

- 1. Circuit lower bounds in high complexity classes
- 2. Circuit lower bounds in low complexity classes
- 3. Quantum circuit lower bounds
- 4. Proof techniques for circuit lower bounds

QAC⁰ circuit

Gate set = {arbitrary 1-qubit gate, (generalized) CNOT}

Can shallow quantum circuit compute Parity?

• Constant fan-in Q-circuit needs $O(\log_{COUT})$ depth to compute Parity. $\leq 2^2 = 4$ input bits

Quantum Circuit Lower Bounds for Parity

Conjecture:

No poly-size QAC⁰ circuit of unbounded ancilla can compute Parity.

Theorem [Fang, Fenner, Green & Zhang (2006)]

No depth- $o(\log n)$ QAC⁰ circuit of o(n) ancilla qubits can compute Parity.

Theorem [Pade, Fenner, Grier & Thierauf (2020)]

No **depth-2** QAC⁰ circuit of **unbounded** ancilla qubits can compute Parity.

Quantum Supremacy in Shallow circuits

Theorem [Bravyi, Gosset & Koenig (2018)]

∃search problem (named "2D hidden linear function"):

- const-depth Q-circuit of bounded fan-in gates can solve,
- no $o(\log n)$ -depth circuit of bounded fan-in gates can solve.

Improved by [Le Gall (2019)], [Coudron, Stark & Vidick (2018)], [Bene Watts, Kothari, Shaeffer & Tal (2019)]

Overview

- 1. Circuit lower bounds in high complexity classes
- 2. Circuit lower bounds in low complexity classes
- 3. Quantum circuit lower bounds
- 4. Proof techniques for circuit lower bounds

Techniques for Circuit Lower Bounds in High Complexity Classes

Karp-Lipton collapse argument

 – Σ²P ∩ Π²P ⊄ SIZE[n¹⁰⁰] [Kannan (1982)]
 – ZPP^{NP} ⊄ SIZE[n¹⁰⁰] [Köbler & Watanabe (1997)]

• Algorithm design approaches

Constructing non-trivially fast CKT-SAT algorithms
 [Williams (2013)]

Generalization of NP

e.g., SAT \in NP $\phi(x_1, \dots, x_n) \in$ SAT $\iff \exists a_1, \dots, a_n \phi(a_1, \dots, a_n) = 1$

Generalization of NP

e.g., $\Sigma_2 \text{SAT} \in \Sigma_2 P$ $\phi(x_1, \dots, x_n, y_1, \dots, y_m) \in \Sigma_2 \text{SAT}$ $\overleftrightarrow \exists a_1, \dots, a_n, \forall b_1, \dots, b_n \phi(a_1, \dots, a_n, b_1, \dots, b_m) = 1$

Generalization of NP

Polynomial-Time Hierarchy

Karp-Lipton Collapse Argment

- 1. PH $\not\subset$ SIZE[n^{100}]
- 2. Case-Analysis
 - 1. NP ∉ SIZE[n^{300}] → Done!
 - 2. NP ⊂ SIZE[n^{300}] → By Karp-Lipton Theorem,

PH collapses to some class : $PH = \mathbb{C}$.

Then, PH = $\mathbb{C} \not\subset SIZE[n^{100}]$.

PH has (superlinearly) hard problems.

Theorem [Kannan (1982)]

No n^{100} -size circuit can compute some $\Sigma^4 P$ problem.

Problem: HARDGiven: n-bit string $x \in \{0, 1^{00} - \text{size circuit}\}$ $\exists z \in \{0,1\}^n$: $C(z) \neq f_{\text{HARD}}(z)$ Decide: $f_{\text{HARD}}(x) = 1$? f_{HARD} is function whichno n^{100} -size circuit can compute.

Caveat: This is not precise definition, which is complicated from technical reasons. 57

Collapse of PH

Some n^{300} -size circuit C^* can compute SAT and C^* can be simulated by class- \mathbb{C} computation \Rightarrow PH = \mathbb{C}

Argument for CLBs

Case 1

SAT has **no** n^{300} -size circuit \rightarrow NP $\not\subset$ SIZE[n^{300}]

Case 2

SAT has n^{300} -size circuit $C^* \rightarrow PH = \mathbb{C} \not\subset SIZE[n^{100}]$

if C^* can be simulated in $\mathbb{C}!_{58}$

Circuit Lower Bounds from Karp-Lipton Collapse Argments

Theorem [Kannan (1982)]

No n^{100} -size circuit can compute some $\Sigma^2 P \cap \Pi^2 P$ problem.

Theorem [Köbler & Watanabe (1997)]

No n^{100} -size circuit can compute some **ZPP**^{NP} problem.

Techniques for Circuit Lower Bounds

- Random restriction [Furst, Saxe, & Sipser (1984)]
 - − Parity \notin AC⁰
 - Variant applies to quantum circuit lower bound for Parity [Fang, Fenner, Green, Homer & Zhang (2003)]
- Razborov-Smolensky argument [Razborov (1987), Smolensky (1987)]
 - − Parity \notin AC⁰
 - Parity(x_1, \dots, x_n) = $x_1 \oplus \dots \oplus x_n$
 - Parity \notin AC⁰[Mod₃]
 - $AC^{0}[Mod_{3}] = AC^{0}$ that allows Mod_{3} gates

Razborov-Smolensky Argument

1. Parity: $\{+1, -1\}^n \rightarrow \{+1, -1\}$ (in Fourier basis) is high-deg poly.

$$Parity(x_1, \dots, x_n) = x_1 x_2 \cdots x_n$$

- 2. AC⁰ circuit is well-approximable by low-deg poly. (Domain conversion is easy: x' = 2x - 1 for $x \in \{0,1\}, x' \in \{+1,-1\}$)
- 3. Suppose AC⁰ circuit can compute Parity.
 → Parity has impossibly good approx.

w/low-deg poly.

Contradiction!

Note: this can show Parity $\notin AC^0[Mod_3]$, too.

Polynomial Representations

- Polynomial representations (over $\{0,1\}^n$)
 - $\operatorname{AND}(x_1, \dots, x_n) = x_1 \cdots x_n$
 - $OR(x_1, \dots, x_n) = 1 (1 x_1) \cdots (1 x_n)$
- (1ϵ) -approx. polynomial representations
 - Random subset $\{x_{i_1}, \dots, x_{i_m}\}$ of size $m = \epsilon^{-1} \log n$
 - $\widetilde{\text{AND}}(x_1, \dots, x_n) = x_{i_1} \cdots x_{i_m}$ $- \widetilde{\text{OR}}(x_1, \dots, x_n) = 1 - (1 - x_{i_1}) \cdots (1 - x_{i_m}) \quad \text{degree } \epsilon^{-1} \log n$
- $\Pr[\operatorname{AND}(x) \neq \widetilde{\operatorname{AND}}(x)] \leq \epsilon$ degree $(\epsilon^{-1} \log n)^2$
- $\Pr[\operatorname{AND}(\operatorname{OR}(x), \dots) \neq \widetilde{\operatorname{AND}}(\widetilde{\operatorname{OR}}(x), \dots)] \leq 2\epsilon$
- Depth-d s-size circuit can be $\Omega(1)$ -approximated by deg- $O\left((\log s)^{2d}\right)$ polynomial.

degree *n*

Algorithm Design Approaches

- [Williams (2010, 2014), Murray & Williams (2018)]
 Constructing fast algorithms for CKT-SAT yields CLBs!
- [Impagliazzo & Kabanets (2004), Gutfreund & K (2010)]
 Derandomizing some randomized algorithms yields CLBs!
- [Kabanets et al. (2013)]
 Compressing truth tables yields CLBs!
- [Fortnow & Klivans (2004), Klivans et al. (2013)]
 Constructing good learning algorithms yields CLBs!

Concluding Remarks

- See my survey papers:
 - K, "Proving Circuit Lower Bounds in High Uniform Classes," Interdisciplinary Information Sciences 20(1): 1-26, 2014.
 - K, "Circuit Lower Bounds from Learning-theoretic Approaches," Theoretical Computer Science, 733: 83-98, 2018.
- New techniques beyond barrier results?
 - Relativization barrier [Baker, Gill & Solovay (1975)]
 - Natural-proof barrier [Razborov & Rudich (1997)]
 - Algebrization barrier [Aaronson & Wigderson (2009)]