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Circuit Model (bounded fan-in)

Gate set = {A,V, =} T size =6
|fan|n 2|ifan|n 2| \/ depth=4
S~
A
RN
A \%
fan out = N
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Circuit Model (unbounded fan-in)

Gate set = {A,V, 1} circuit model

[_/\jﬁ ' for constant-depth circuits
fan-in=oo || fan-in = oo
>

A

S—




Circuit Complexity

Circuit Complexity

~

A problem L has circuit complexity s(n)

= necessary and sufficient size of circuits
that computes L on every input length n

. /

Constructing circuits of size s(n) for L = circuit upper bounds s(n)

Proving no circuit of size s(n) for L =¥ circuit lower bounds s(n) ]




Overview

1. Circuit lower bounds in high complexity classes



Why Circuit Lower Bounds
in ngh CompIeX|ty Classes?
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Implications of Circuit Lower Bounds

| ]

Proving circuit lower bounds for class NP:

No poly-size circuit can compute some NP problem

solved by
oly-size circuits
PoY NP £ P

=~ class P

(NP & P/poly =» NP # P)



Implications of Circuit Lower Bounds

Universal derandomization

of randomized algorithms

Stay tuned for the next session of Shuichi’s talk!




Complexity Classes

y . : :
* Focus on “decision pro polynomial-time (e.g. n*-time)

in input length n

— Answer = Yes or No

* P =problems which can be solved efficiently
by deterministic classical algorithms

(formally, Turing machines).

* NP =problems whose “witnesses” can be
verified efficiently by deterministic classical
algorithms.

algorithm = deterministic classical algorithm

(unless specified otherwise)




Complexity Classes

* P/poly = problems solved efficiently by
classical circuits. S
— P C p/p0|y in input length n

* SIZE[s(n)] = problems solved by s(n)-size
classical circuits.

— P/poly = SIZE[poly(n)]

circuit = deterministic classical circuit

(unless specified otherwise)



Recap: class NP

* NP =problems whose “witnesses” can be
verified by efficient algorithms.

Problem: N is divided by < M?

(N=1396763, M=3000) (N=1396763, M=3000)

1396763 l | Prover
ez = 120 : L////—_J (all-mighty)

1163
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Recap: class NP

. NP problems whose “witnesses” can be

If “No” instance
no witness

el m: Nis divided by < M?

(N=1396763, M=1000) (N=1396763, M=1000)

rifier Prover
(all-mighty)

1396763
- 967

is not int.

whatever Prover sends,
Verifier isn’t cheated.

13



Recap: class NP

J

L € NP
«»

X € L
X &L

dw: V(x,w) =1
vw: V(x,w) =0

lw| = poly(]x]|)
V. poly-time algorithm



Problem: SAT

-

Recap: NP-complete problem

Given: Boolean formula ¢ (x4, ..., x;,)
Decide: ¢ is satisfiable?

3(a; - a,) € {0,1}"*: ¢p(aq,...,a,,) =17

~

J

xl/\xz e SAT (x1 — 1,x2 — 1)
x{ N\ xy & SAT

 SAT is NP-complete problem

—SATeP->NP=P
— SAT is the “hardest” in NP.

15



Circuit Lower Bounds for NP

The best circuit lower bound is:

Theorem [lwama, Lachish, Morizumi & Raz (2005)]

NP ¢ SIZE[5n] J

Only linear lower bounds!

We can’t yet exclude the possibility

kNP-compIete problems could be solved by bn-size circuit!/

4 , )
Relaxation:

» superlinear circuit lower bounds
\> circuit lower bounds in higher classes than NP

19




Superlinear Circuit Lower Bounds
in High Complexity Classes

EXPSPACE

5,PN M,P ¢ SIZE[n100]
[Kannan (1982)]

PSPACE
PH -

ZPPNP & SIZE[n109]
[KObler & Watanabe (1997)]

/



Superpolynomial Lower Bounds
in High Compley*“'====-

MAg,, € P/poly
[Buhrman, Fortnow & Thierauf (1998)]

EXPSPACL

PSPACE




Complexity Classes

(Polynomial-time Hierarchy) = NPNP""

— Generalization of class NP.

—c.f. £,P = NPN? = problems verified by
polynomial-time algorithms with NP oracle

* NP oracle = black box solving any NP problem in 1 step.

= problems solved by polynomial-
space (poly(n)-space) algorithms.
— No time bounds.



Complexity Classes

e EXP = problems solved by exponential-time
(2Poly()_time) algorithms.
— Exponential-time analogue of class P

* NEXP = problems verified by exponential-time
algorithms.

— Exponential-time analogue of class NP
 EXPSPACE = problems solved by exponential-

space (2P°Y("W)_snace) algorithms.

— Exponential-space analogue of class PSPACE



Circuit Lower Bounds

in High Compley*“'====-

MAg,, € P/poly
[Buhrman, Fortnow & Thierauf (1998)]

EXPSPACL

5,PN N,P ¢ SIZE[n190]
[Kannan (1982)]

PSPACE
PH -

ZPPNP & SIZE[n109]
[KObler & Watanabe (1997)]

/



Complexity Classes

= NPNP, = complement class of X, P

(Zero-error Probabilistic Polynomial-time)
= problems solved by expected polynomial-
time randomized algorithm with zero error

= problems solved by expected
polynomial-time randomized algorithm with
zero error with NP oracle



Complexity Classes

(Merlin-Arthur) = problems which can be
verified by polynomial-time randomized
algorithms with high probability.

— Randomized analogue of class NP

= problems which can be verified by
exponential-time randomized algorithms with
high probability.

— Exponential-time analogue of class MA



Circuit Lower Bounds
in High Lower "=~~~

MA,, & P/poly
[Buhrman, Fortnow & Thierauf (1998)]

EXPSPACL

5,PN N,P ¢ SIZE[n190]
[Kannan (1982)]

PSPACE
PH -

ZPPNP & SIZE[n109]
[KObler & Watanabe (1997)]

Conjecture: NP & P/poly

/
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Breakthrough from Algorithm Design
poly-size

Theorem [Williams (2014)] constant-depth circuits
with modulo gates

NEXP ¢ ACCC

Given a circuit C of class C (e.g., P/poly, ACC),

decide whether C is satisfiable.

15t step: I(2™/superpoly(n))-time algorithm for C-CKT-SAT
=» NEXP & C

2" step: (2/superpoly(n))-time algorithm for ACCO-CKT-SAT

\_ »/




Gate set
= {AND, OR, NOT}

unbounded
fan-in

ACY

Constant Depth
(& poly-size)

26



\Valalll|
Mod, (x) =1
iff m | wt(x)

C° with counter)

|

Gate set
={AND, OR, NOT, Mod__, }

Constant Depth
(& poly-size)

unbounded
fan-in \7

27



Breakthrough from Algorithm Design

Theorem [Williams (2014)]

NEXP ¢ ACCC

Given a circuit C of class C (e.g., P/poly, ACC),

decide whether C is satisfiable.

15t step: I(2™/superpoly(n))-time algorithm for C-CKT-SAT
=» NEXP & C

2" step: (2/superpoly(n))-time algorithm for ACCO-CKT-SAT

\_ %




Breakthrough from Algorithm Design

ACCP circuit +

linear threshold gates

Theorem [Williams (2018)] at bottom layer

NEXP & ACCPTHR

Improvement
Non-trivially faster algorithm for ACC°ocTHR-CKT-SAT (2" step) J

29



Breakthrough from Algorithm Design

Theorem [Murray & Williams (2018)]

NQP & ACCY%THR

nPolylog n_time version of NP

Improvement

NEXP can be replaced with NQP (15 step)

30



Circuit Lower Bounds

for High Lowe~"~-'-
MA,, & P/poly

[Buhrman, Fortnow & Thierauf (1998)]

EXPSPAC_

NEXP & ACCPTHR
[Williams (2014, 2018)]

PSPACE

NQP & ACCPTHR
[Murray & Williams (2018)]




Overview

2. Circuit lower bounds in low complexity classes



Circuit Lower Bounds
for Low Complexity Classes

 Computational power of restricted circuits?

— Boolean formulas
* de Morgan formulas
* Formulas over full binary basis
— Low-depth (shallow) circuits
e constant-depth circuits
* O(log(n))-depth circuits



Boolean Formula (de Morgan)

Gateset={A, V} T size = 8

| fan-in =2 Il fan-in =2 I V depth =3

/\

/\
fanou’g/ \

HA L8



Boolean Formula (Full Binary Basis)

Gate set = {any binary func.} T size = 8
Vv depth =3
/ \
A &)

AA488



Circuit Model (unbounded fan-in)

Gate set = {A, V, —} circuit model

[—/\j ﬁ | for constant-depth circuits
fan-in=oo || fan-in = oo




Low-Depth Circuit Classes

* AC! = problems solved by 0 (log'n)-depth poly-size
circuit of unbounded fan-in

* NC! (Nick’s Class) = problems solved by 0 (logn)-
depth poly-size circuit of bounded fan-in

Nicholas Pippenger
H L https://www.hmc.edu/mathematics/people/faculty/nicholas-pippenger/



https://www.hmc.edu/mathematics/people/faculty/nicholas-pippenger/

Gate set
= {AND, OR, NOT}

unbounded
fan-in

ACY

Constant Depth
(& poly-size)

38



Why Circuit Lower Bounds
for Low Complexity Classes?

e Relaxation for circuit lower bounds

— Too difficult to prove lower bounds in general
circuit models!

— Towards understanding of proof techniques in
successful cases for weaker circuit models.

* Pvs. NC!conjecture

— Is every P problem parallelizable?

* NC! problem is O(log(n))-time solvable by parallel
computation.

 poly-size Boolean formulas = NC! circuits



Parity

Problem: Parity ~

Given: n-bit string x € {0,1}"
Decide: #1 of x is odd or not.

e, x Dx,b--Dx, =17
\ /

Remark: Parity € NC!

Some restricted circuits cannot compute Parity!

40




Formula Lower Bounds

The lower bound of Parity for de Morgan formulas:

Theorem [Khrapchenko (1971)] N

L, (Parity) = n?

Ly (f) = size of minimum de Molgan formula computing f

It is known L,,,(Parity) < n? [Tarui (2010)], i.e., the bound is tight.

41




Formula Lower Bounds

The best known lower bound for de Morgan formulas:

Theorem [Tal (2017)]

n3
LdM(KR) =1 (log n-(loglog n)z)

Ly (f) = size of minimum de Molgan formula computing f

KR:{0,1}" — {0,1} is some explicit function in P.
([Komargodski & Raz (2013)], [Komargodski, Raz & Tal (2013)])

42



Formula Lower Bounds

The best known lower bound for formulas over full binary basis:

Theorem [Nechiporuk (1966)] N

n

Liw(ED) = Q2 (logzn)
\_ /

L, (f) = size of minimum formula over full binary basis computing f

It is known L ,(ED) = 0(n?/logn), i.e., the bound is tight.

43



ACP circuit vs. Parity

Theorem [Ajtai (1983), Furst, Saxe & Sipser (1984)]

Parity &€ AC°

Theorem [Smolensky (1987)]

Parity € AC°[Mod,,] for any prime p > 2

The power of AC°[Mod,,,] was NOT known for a composite m
until Williams’ result NEXPZACCO,

44



Overview

3. Quantum circuit lower bounds



QAC?O circuit

Gate set = {arbitrary 1-qubit gate, (generalized) CNOT}

low depth

A

any 1-qubit {

gate ] Py M
D T

. N

input |x) 1 i

O @

CNOT ) ? ®

] ¢ o
® ¢ ®

ancilla |0m)— l \f
i D ®

[f(x)) target

46



Can shallow quantum circuit
compute Parity?

* Constant fan-in Q-circuit needs O (lo§  pepth-2 cnot

depth to compute Parity.

input |x) -

—

M

j/l_l\'/l_l

L

M ]

9
N
\

I

can touch

< 22 = 4 input bits

‘J_

—

Parity MUST touch
all the 8 input bits!

o0 E

47



Quantum Circuit Lower Bounds
for Parity

Conjecture:
No poly-size QACP circuit of unbounded ancilla
can compute Parity.

Theorem [Fang, Fenner, Green & Zhang (2006)]

No depth-o(log n) QACP circuit of o(n) ancilla qubits
can compute Parity.

Theorem [Pade, Fenner, Grier & Thierauf (2020)]

No depth-2 QAC? circuit of unbounded ancilla qubits

can compute Parity.
\_ 15/




Quantum Supremacy
in Shallow circuits

Theorem [Bravyi, Gosset & Koenig (2018)]

.

dsearch problem (named “2D hidden linear function”):
- const-depth Q-circuit of bounded fan-in gates can solve,
- no o(logn)-depth circuit of bounded fan-in gates can solve.

J

Improved by [Le Gall (2019)], [Coudron, Stark & Vidick (2018)],

[Bene Watts, Kothari, Shaeffer & Tal (2019)]

49



Overview

4. Proof techniques for circuit lower bounds



Techniques for Circuit Lower Bounds
in High Complexity Classes

* Karp-Lipton collapse argument
— 22PNMN2P ¢ SIZE[n1Y?] [Kannan (1982)]
— ZPPNP ¢ SIZE[n19Y] [KSbler & Watanabe (1997)]

e Algorithm design approaches

— Constructing non-trivially fast CKT-SAT algorithms
[Williams (2013)]



Generalization of NP

[ J

L € NP
— x €L dw: R(x,w) =1
x & L Vw: R(x,w) =0

lw| = poly(]x|)
R: poly-time comp.

e.g., SAT € NP
¢ (xy, ..., x,) € SAT 3a,, .., a, p(a,, ...,a,) =1



Generalization of NP

| |

LeX,pP
— x €L 3IwVw,:R(x,w,w,) =1
x &L Vw,Iw,:R(x,w,,w,) = 0

lwil, [w,| = poly(]x])
R: poly-time comp.

e.g., 2,5AT € 2,P

by, ey Xy Vi o) Yo) € Z,SAT
3a,, ..., a,,Vby, ..., b, ¢(ay,..,a,by ...,b, ) =1



Generalization of NP

Jw,Vw, - Iwg: R(x, Wy, ..., w,) = 1
x &L

Vw,aw, - Vwg: R(x,wy, ...,w;,) =0

(Wi, e, Wl = poly(lx)
R: poly-time comp.



Polynomial-Time Hierarchy

|

PH = Usz



Karp-Lipton Collapse Argment

1. PH & SIZE[n109]

2. Case-Analysis
1. NP & SIZE[n399] =» Done!
2. NP c SIZE[n3°9] =» By Karp-Lipton Theorem,
PH collapses to some class : PH = C.
Then, PH = C & SIZE[n10Y].



PH has (superlinearly) hard problems.

Theorem [Kannan (1982)] N

No n19%0-sjze circuit can compute some Z*P problem.

Problem: HARD
vC € {n'%—size circuit}

Given: n-bit string x € {0, C(EI)Z E;O,l}"é )
AR = Z
Decide: fyapp(x) = 17 e
fuarp is function which
no n1%0-sjze circuit can compute.
\_ pute.

Caveat: This is not precise definition, which is complicated from technical reasons. s



Collapse of PH

Theorem [Karp & Lipton (1982)]

Some n3Y0-size circuit C* can compute SAT
and C* can be simulated by class-C computation

> PH =C

-
Argument for CLBs \

SAT has no n3%-sjze circuit =» NP & SIZE[n390]

SAT has n390-size circuit C* = PH = C & SIZE[n199]
\ if C* can be simulated in C!..




Theorem [Kannan (1982)]

Circuit Lower Bounds
from Karp-Lipton Collapse Argments

\

No nl%-sjze circuit can compute some 22PNMN2P problem.

\_

\_

Y

Theorem [Kobler & Watanabe (1997)] N
No n190-size circuit can compute some ZPPNP problem.

Y
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Techniques for Circuit Lower Bounds

 Random restriction [Furst, Saxe, & Sipser (1984)]
— Parity ¢ ACY

— Variant applies to quantum circuit lower bound for
Parity [Fang, Fenner, Green, Homer & Zhang (2003)]

* Razborov-Smolensky argument [Razborov (1987),
Smolensky (1987)]

— Parity ¢ AC°
* Parity(xq,...,x,) =x1 D - D x,,

— Parity ¢ AC°[Mod;]
« AC°[Mod;] = AC? that allows Mod, gates



Razborov-Smolensky Argument

1. Parity: {+1,—1}" - {4+1, —1} (in Fourier basis) is high-deg
poly.
Parity(xq, ..., X) = X1X5 =+ Xy,

2. ACY circuit is well-approximable by low-deg poly.
(Domain conversion is easy: x’ = 2x — 1 forx € {0,1},x" € {+1,—1})

3. Suppose ACY circuit can compute Parity.
=» Parity has impossibly good approx.
w/ low-deg poly.
Contradiction!

Note: this can show Parity ¢ AC°[Mod;], too.



Polynomial Representations

Polynomial representations (over {0,1}")

— AND(xq,, ..., Xp) = X1 =+ X, degree n ]
— OR(xq,, 0, xp)) =1—-(1 —x9) - (1 —x;,)

(1 — €)-approx. polynomial representations

— Random subset {x; , ..., x; }of sizem = e llogn
D(xq,, ..., Xp) = Xj, =+ X; _
B (TR(xi,T ) )= . _1(1 _’;il) (1 xim)ﬁ degree €1 logn]
Pr[AND(x) * A—NT)(x)] < EA degree (e !logn)? ]
Pr[AND(OR(x), ...) # AND(OR(x), ...)| < 2¢
Depth-d s-size circuit can be 0(1)-approximated
by deg-0 ((log S)Zd) polynomial.
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Algorithm Design Approaches

[Williams (2010, 2014), Murray & Williams (2018)]
— Constructing fast algorithms for CKT-SAT yields CLBs!

[Impagliazzo & Kabanets (2004), Gutfreund & K (2010)]
— Derandomizing some randomized algorithms yields CLBs!

[Kabanets et al. (2013)]
— Compressing truth tables yields CLBs!

[Fortnow & Klivans (2004), Klivans et al. (2013)]
— Constructing good learning algorithms yields CLBs!



Concluding Remarks

* See my survey papers:

— K, “Proving Circuit Lower Bounds in High Uniform
Classes,” Interdisciplinary Information Sciences 20(1):
1-26, 2014.

— K, “Circuit Lower Bounds from Learning-theoretic
Approaches, Theoretical Computer Science, 733: 83-
98, 2018.

* New techniques beyond barrier results?
— Relativization barrier [Baker, Gill & Solovay (1975)]
— Natural-proof barrier [Razborov & Rudich (1997)]
— Algebrization barrier [Aaronson & Wigderson (2009)]



