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We will discuss the naturalness problem  
in the context of the IIB matrix model. 



1.  IIB matrix model 
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Green-Schwartz action in the Schild Gauge 

Regularization by matrix 
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A candidate of the constructive definition of string theory. 

Evidences 

(1) World sheet regularization 



Multi string states are naturally described in the 
large-N limit. 

⇔ 
 
 
	           .                                                        . 

           .                                                            . 
           .                                                                . 



(2) Loop equation and string field 
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Wilson loop = string field 
 

 　	 ⇔	 	 creation annihilation operator of  

loop equation  →	 light-cone string field 
 

This can be shown with some  
assumptions . 
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(3) effective Lagrangian and gravity 

Integrate out　
this part.	
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The loop integral gives the 
exchange of graviton and dilaton.  



2.  Emergence of space-time 
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Various possibilities for the emergence 
of space-time 

(1)   Aµ  as the space-time coordinates  

    mutually commuting  Aµ 　⇒　space-time  

µµ xA =
ex. flat space  

uniformly distributed eigenvalues  

 non-commutative lumps   
           ⇒ excitations around the vacuum  

 ⇒ vacuum  (flat space-time)  



    non-commutative  Aµ 　⇒　NC space-time  

fluctuations   ⇒  local fields in NC space 

(2)  Aµ  as non-commutative space-time  

ex. flat non-commutative space  
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 ⇒ flat non-commutative space  

In non-commutative space, Aµ  can be regarded as 
both coordinates and momenta. 

ν
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(3)  Aµ  as momenta 

ex. derivative on flat space  
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Aµ  can be regarded as  a covariant derivative  
on any manifold with less than ten 
dimensions. 

,
( ) , ( 1,.., )b
aC a Dβ
α = : the Clebsh-Gordan coefficients 

vector r r rV V V V⊗ ≅ ⊕ ⊕L r : regular representation 

αϕ : regular representation field on manifold M 



3.  Low energy effective theory 



Low energy effective theory is obtained by taking the 
fluctuations into account. 

why not 
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Because of the symmetry, it should be 

Usually, action is additive. 
Is that all? 

( ).

,
4
1

,

4
int

24
0

int0

ψγψ

ψγψ

µ
µ

µ
µ

µν

AexdS

FxdS

SSS

∫

∫

=

⎟
⎠

⎞
⎜
⎝

⎛ ∂+
−

=

+=

.int0 SSS = (Sugawara ~1980 ) 



If it is true, the coupling constant is determuned by 
the history of the universe:  

int00inteff SSSSS +=

Actually, in quantum gravity or matrix model, there 
are some mechanisms that the low energy effective  
theory becomes 

.)()(

,eff

xOxgxdS

SSScSScScS

i
D

i

kji
kji

kjij
ji

iji
i

ii

∫

∑∑∑

=

+++= 
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Then the path integral is given by 
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 action (Euclidean) 

A wormhole induces  
a local operator  
at each end point 

sum over wormholes 

(1)  Space-time wormhole and baby universe 

In matrix model, wormhole-like fluctuations of string scale 
are expected to exist  They need not be classical solutions. 

bifurcated wormholes  ⇒  cubic terms, quartic terms, … 



(2) integration of (off ) diagonal blocks 

The path integral gives  
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Integrate out　
this part.	
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4. Wave function of the multiverse 



When we consider the time evolution (the path integral ) 
of the matrix model, a number of universes emerge from 
fluctuations, and then evolve as almost classical 
universes, 
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where the path integral is approximated by 

time 



infrared cutoff 
(1) 

There appears an effective infrared cutoff for the 
size of universes. 

At present, for the IIB matrix model, it is not 
clear whether we need to introduce an infrared 
cutoff by hand or not. 

Naively, attractive forces among the eigenvalues 
of the matrices are canceled by SUSY, and we 
need to introduce an cutoff by hand. 

However, if we take the fermion zero modes into 
account, then there appears a week attraction 
among the eigenvalues, and we can show the path 
integral converges in the Euclidean case. 

For Lorentzian case, no definite answer is known. 



infrared cutoff (2) 

We assume that there is an infrared cutoff for the 
size of universes. 

IRz
ceases 
to 
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bounce
s back 
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wave function of a universe 
  Assume that a universe starts from a small size ε.  

Collecting these results, we find that the universe is described by the following path

integral,
∫

[dN ][dz][dpz] exp(i

∫
dt(pz ż − NH)), (29)

where H is given by (??).

In the rest of this section, we will determine the wave function of the universe,

assuming that it initially has a small size ε (see Fig??), The amplitude between z = ε

Figure 3: The path integral (??) is defined as a sum over all histories connecting two

geometries.

and z = z is given by the following path integral5,

〈z|e−iĤ| ε〉 =

∫

z(0)=ε, z(1)=z

[dpz][dz][dN ] exp(i

∫ t=1

t=0

dt (pz ż − N(t)H)). (30)

By choosing the gauge such that N(t) is a constant T, the path integral of N(t) is

reduced to the ordinary integral over −∞ < T < ∞6,
∫ ∞

−∞
dT

∫

z(0)=ε, z(1)=z

[dpz][dz] exp

(
i

∫ t=1

t=0

dt (pz ż − TH)

)

= C ×
∫ ∞

−∞
dT〈z|e−iTH| ε〉

= C × 〈z|δ(H)|ε〉

= C × 〈z|δ(H)

(∫ ∞

−∞
dE|φE〉〈φE|

)
|ε〉.

From the first line to the second line, viewing TH as the Hamiltonian, we have used

the ordinary relation between the operator formalism and the path integral one, and
5This analysis is similar to that of [?].
6To be precise, we should integrate only positive T if we fix the time-ordering of the surface Σt=0

and Σt=1 as in Fig.??. However, we take the integration range as −∞ < T < ∞ to obtain the
well-known Wheeler-Dewitt equation in the path integral formalism. This procedure corresponds to
summing over the ordering of the two surfaces too.

6

C is some constant. In the final line, we have inserted the complete set {|φE〉 } defined

by

〈φ′
E|φE〉 = δ(E − E ′), (31a)

H|φE〉 = E|φE〉. (31b)

Therefore, by using φE(z) ≡ 〈z|φE〉, the amplitude can be expressed as

C × φ∗(ε)φ(z). (32)

In other words, the quantum state of the universe that emerged with size ε is given by

C × φ∗(ε)|φ〉. (33)

We can calculate φE(z) in the canonical quantization formalism. By replacing

pz → −i∂/∂z in the Hamiltonian (??), Eqn.(??) becomes

√
z
(1

2

d2

dz2
− U(z)

)√
z φE(z) = EφE(z). (34)

Note that for E = 0 this leads to the Wheeler-DeWitt equation. However, we need to

solve this equation for general E since we should determine the normalization constant

of the wavefunction according to (??). We rewrite (??) as

(− d2

dz2
− k2

E(z))
√

zφE(z) = 0, (35)

where

k2
E(z) ≡ −2U(z) − 2E

z

= 9Λ − 1

z2/3
Kα +

2Cmatt

z
+

2Crad

z4/3
− 2E

z
,

and apply the WKB method to the function
√

zφE(z). The solution in the classically

allowed region, k2(z) > 0, is given by a linear combination of

φ(z) =
1

√
π
√

z
√

k(z)
exp(±i

∫ z

dz′k(z′)), (36)

where the normalization is determined by (??) (see ??).

We need to specify the boundary condition to determine the solution completely.

As a simple example, if we require φE(0) = 0,7 we have

φ(z) =
1√

π/2
√

z
√

k(z)
sin(

∫ z

dz′k(z′)). (37)

However, we do not need the details of the solution in the following sections.
7The boundary condition would be more complicated because the behavior in z < ε is determined

by the dynamics near singularity.
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 The wave function of the universe that emerges from size ε is      



Wave Function of N-verse 

・Then, the N-verse wave fn is given by the tensor product of N 
universes,  

⊗ 

ε ε ε 

⊗ ・・・	

・Let        be the prob. amp. of a universe emerging from 
nothing  
  to  the size ε. 

・The state of each universe is                                 .  



Wave Function of the multiverse 

The multiverse: the sate with indefinite number of universes  

Figure 5: A sketch of an example of the multiverse. In this case, the initial state has

some baby universes.

tially (see Figure.5), and the state can be written as
∫ ∏

i dλi |"λ〉, where w is a function

of "λ.

To write down the multiverse state, we also need the probability amplitude of a

universe emerging from nothing, which we denote by µ0 in analogy of the chemical

potential. Here we assume that all universes are created at the size ε. Together with

the factor in (33), the weight of each universe µ is given by,

µ := µ0 × C × φ∗(ε). (39)

A crucial fact is that µ does not depend on Λ strongly. This is because φ∗(ε) is a

smooth function of Λ as is seen from (37), and C arising from the path measure should

have nothing to do with λi.

Then, the multiverse wave function can be written as

|φmulti〉 =
∞∑

N=0

|ΦN〉 (40)

where |ΦN〉 stands for the N -universe state, whose wave function is given by

ΦN(z1, · · · , zN) =

∫
d"λ µN × φ(z1)φ(z2) · · ·φ(zN) |"λ〉, (41)

where

d"λ ≡
∏

i

dλi. (42)
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: the set of the coupling constants 
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5. Naturalness and the big fix 



Density Matrix 
・Our universe  : a subsystem of the multiverse. 

・The density matrix of our is obtained 
 by integrating   out the other universes. 

ours 

4.2 Density Matrix of Our Universe

We now can obtain the density matrix of our universe by tracing out the other universes

and the baby universes, namely !λ. Using (??), we can calculate it as

ρ(z′, z) =
∞∑

N=0

∫
dzN

i

N !
Φ∗

N+1(z
′, z1, · · · , zN)ΦN+1(z, z1, · · · , zN)

=
∞∑

N=0

1

N !

∫ ∞

−∞
d!λ |µ|2φ(z′)∗φ(z) ×

(∫
dz

′′|µφ(z
′′
)|2

)N

=

∫ ∞

−∞
d!λ |µ|2 φ(z′)∗φ(z) × exp

(∫
dz

′′|µφ(z
′′
)|2

)
, (43)

where z and z′ are the size of our universe. We note that the above integrand depends

on {λi} through the wave function φ.

5 Vanishing Cosmological Constant

In this section, we show that the integrand in (??) has a strong peak at a point in the

{λi} space where the cosmological constant Λ = Λ({λi}) becomes very small, which

means the cosmological constant problem is automatically solved. We also discuss the

possibility of the big fix.

5.1 Evaluation of the Density Matrix

In this subsection, we examine how the exponent in the density matrix (??),
∫ ∞

0

dz
′′|µφ(z

′′
)|2, (44)

depends on Λ.

First we sketch the potential U(z) in (??). Again we assume that all the universes

have the topology of S3 (K = 1), so that U(z) is given by

2U(z) = −k2(z) = −9Λ +
1

z2/3
− 2Cmatt

z
− 2Crad

z4/3
. (45)

For large z, the leading term is the cosmological constant Λ, and the next leading term

is the curvature term. We note that only the curvature term is positive, and U(z) has

a maximum at one point z = z∗,

U ′(z∗) = 0. (46)
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Recall: 



The Big Fix 
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For large z, the leading term is the cosmological constant Λ, and the next leading term

is the curvature term. We note that only the curvature term is positive, and U(z) has

a maximum at one point z = z∗,

U ′(z∗) = 0. (46)
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As we vary Λ with Cmatt and Crad kept fixed, U(z) changes as in Fig ??. There is

a critical value Λcr at which the maximum becomes zero (see Fig??);

U(z∗)|Λ=Λcr = 0. (47)

Note that if Λ = Λcr, three contributions to U(z), the cosmological constant, curvature

and energy density coming from matter and radiation, are comparable around z ∼ z∗.

The precise values of z∗ and Λcr depend on the history of the universe. If all the matter

decay into radiation by z = z∗, we have Cmatt = 0, and Λcr is given by

z∗ =
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3
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1
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. (for radiation dominated) (48)
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Figure 6: As we vary Λ from zero to Λcr ∼ 1
Crad

, the region where the wave function

takes the tunneling suppression becomes shorter. For Λ > Λcr, there is no suppression.

Now we can examine the behavior of φ(z) in the large-z region, and evaluate the

integral (??). If Λ < 0, the wave function damps exponentially, and (??) is finite (see

Fig??). On the other hand, if Λ ≥ 0, the wave function does not damp for sufficiently

large z, and (??) is divergent. Thus, if we introduce a cutoff for large z, as we will do

below, (??) takes the maximum for some positive value of Λ.

Furthermore, if Λ ≥ Λcr, all the region of z is classically allowed, and we can

reliably use the WKB solution

φ(z) ∼ 1√
zk(z)

, (50)

which becomes larger as the momentum k =
√
−2U becomes smaller. Thus, for

Λ ≥ Λcr, the wave function becomes the largest when Λ = Λcr. On the other hand,
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The other couplings (Big Fix) 

4.2 Density Matrix of Our Universe

We now can obtain the density matrix of our universe by tracing out the other universes

and the baby universes, namely !λ. Using (??), we can calculate it as

ρ(z′, z) =
∞∑

N=0

∫
dzN

i

N !
Φ∗

N+1(z
′, z1, · · · , zN)ΦN+1(z, z1, · · · , zN)

=
∞∑

N=0

1

N !

∫ ∞

−∞
d!λ |µ|2φ(z′)∗φ(z) ×

(∫
dz

′′|µφ(z
′′
)|2

)N

=

∫ ∞

−∞
d!λ |µ|2 φ(z′)∗φ(z) × exp

(∫
dz

′′|µφ(z
′′
)|2

)
, (43)

where z and z′ are the size of our universe. We note that the above integrand depends

on {λi} through the wave function φ.

5 Vanishing Cosmological Constant

In this section, we show that the integrand in (??) has a strong peak at a point in the

{λi} space where the cosmological constant Λ = Λ({λi}) becomes very small, which

means the cosmological constant problem is automatically solved. We also discuss the

possibility of the big fix.

5.1 Evaluation of the Density Matrix

In this subsection, we examine how the exponent in the density matrix (??),
∫ ∞

0

dz
′′|µφ(z

′′
)|2, (44)

depends on Λ.

First we sketch the potential U(z) in (??). Again we assume that all the universes

have the topology of S3 (K = 1), so that U(z) is given by

2U(z) = −k2(z) = −9Λ +
1

z2/3
− 2Cmatt

z
− 2Crad

z4/3
. (45)

For large z, the leading term is the cosmological constant Λ, and the next leading term

is the curvature term. We note that only the curvature term is positive, and U(z) has

a maximum at one point z = z∗,

U ′(z∗) = 0. (46)
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if 0 < Λ < Λcr, there is a forbidden region, which suppresses the wave function. The

suppression is stronger for smaller Λ because the forbidden region becomes larger as

we decrease Λ. Thus, we find that (??) takes its maximum value at

Λ = Λcr. (51)

Next we discuss how the maximum value of (??) is determined by the amount of

radiation Crad or matter Cmatt. If we set Λ = Λcr, using (??) we have
∫ ∞

0

dz
′′|µφ(z

′′
)|2 ∼ |µ|2

∫ ∞

0

dz
1

z
√

Λcr

. (52)

Since this is divergent, we introduce an infrared cutoff zIR and replace z = ∞ with

z = zIR. Then the above integral becomes
∫ ∞

0

dz
1

z
√

Λcr

∼ 1√
Λcr

log zIR, (53)

The cutoff zIR should be explained from a microscopic theory of gravity such as string

theory. For example, in the IIB matrix model space-times emerge dynamically from

the matrix degrees of freedom, and an infrared cutoff appears effectively, which is

proportional to some power of the matrix size [?,?,?].

If we consider the case of (??), where the curvature term balances with the radi-

ation, (??) is proportional to
√

Crad log zIR, and the integrand of the density matrix

(??) behaves as

exp

(
const. ×

√
Crad log zIR

)
, (54)

which has an infinitely strong peak at a point in the {λi} space where Crad becomes

maximum. Here, we have assumed that |µ|2 does not have a strong dependence on

{λi} because it is determined by the microscopic dynamics of smaller scales than the

wormholes. Thus we have seen that all the couplings {λi} are fixed in such a way

that Crad is maximized. We call it the big fix following Coleman. In the original

Coleman’s argument the enhancement comes from the action itself, or equivalently,

the exponential factor in the wave function (??), while it comes from the prefactor in

our case. We will discuss this meaning in the next subsection. We also note that the

big fix applies only to the couplings that are induced by the wormholes. In particular,

the cosmological constant is given by

Λ = 1/max
!λ

Crad(#λ), (55)
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4.2 Density Matrix of Our Universe

We now can obtain the density matrix of our universe by tracing out the other universes

and the baby universes, namely !λ. Using (??), we can calculate it as

ρ(z′, z) =
∞∑

N=0

∫
dzN

i

N !
Φ∗

N+1(z
′, z1, · · · , zN)ΦN+1(z, z1, · · · , zN)

=
∞∑

N=0

1

N !

∫ ∞

−∞
d!λ |µ|2φ(z′)∗φ(z) ×

(∫
dz

′′|µφ(z
′′
)|2

)N

=

∫ ∞

−∞
d!λ |µ|2 φ(z′)∗φ(z) × exp

(∫
dz

′′|µφ(z
′′
)|2

)
, (43)

where z and z′ are the size of our universe. We note that the above integrand depends

on {λi} through the wave function φ.

5 Vanishing Cosmological Constant

In this section, we show that the integrand in (??) has a strong peak at a point in the

{λi} space where the cosmological constant Λ = Λ({λi}) becomes very small, which

means the cosmological constant problem is automatically solved. We also discuss the

possibility of the big fix.

5.1 Evaluation of the Density Matrix

In this subsection, we examine how the exponent in the density matrix (??),
∫ ∞

0

dz
′′|µφ(z

′′
)|2, (44)

depends on Λ.

First we sketch the potential U(z) in (??). Again we assume that all the universes

have the topology of S3 (K = 1), so that U(z) is given by

2U(z) = −k2(z) = −9Λ +
1

z2/3
− 2Cmatt

z
− 2Crad

z4/3
. (45)

For large z, the leading term is the cosmological constant Λ, and the next leading term

is the curvature term. We note that only the curvature term is positive, and U(z) has

a maximum at one point z = z∗,

U ′(z∗) = 0. (46)
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The exponent is divergent, and regulated by the IR cutoff : 

if 0 < Λ < Λcr, there is a forbidden region, which suppresses the wave function. The

suppression is stronger for smaller Λ because the forbidden region becomes larger as

we decrease Λ. Thus, we find that (??) takes its maximum value at

Λ = Λcr. (51)

Next we discuss how the maximum value of (??) is determined by the amount of

radiation Crad or matter Cmatt. If we set Λ = Λcr, using (??) we have
∫ ∞

0

dz
′′|µφ(z

′′
)|2 ∼ |µ|2

∫ ∞

0

dz
1

z
√

Λcr

. (52)

Since this is divergent, we introduce an infrared cutoff zIR and replace z = ∞ with

z = zIR. Then the above integral becomes
∫ ∞

0

dz
1

z
√

Λcr

∼ 1√
Λcr

log zIR, (53)

The cutoff zIR should be explained from a microscopic theory of gravity such as string

theory. For example, in the IIB matrix model space-times emerge dynamically from

the matrix degrees of freedom, and an infrared cutoff appears effectively, which is

proportional to some power of the matrix size [?,?,?].

If we consider the case of (??), where the curvature term balances with the radi-

ation, (??) is proportional to
√

Crad log zIR, and the integrand of the density matrix

(??) behaves as

exp

(
const. ×

√
Crad log zIR

)
, (54)

which has an infinitely strong peak at a point in the {λi} space where Crad becomes

maximum. Here, we have assumed that |µ|2 does not have a strong dependence on

{λi} because it is determined by the microscopic dynamics of smaller scales than the

wormholes. Thus we have seen that all the couplings {λi} are fixed in such a way

that Crad is maximized. We call it the big fix following Coleman. In the original

Coleman’s argument the enhancement comes from the action itself, or equivalently,

the exponential factor in the wave function (??), while it comes from the prefactor in

our case. We will discuss this meaning in the next subsection. We also note that the

big fix applies only to the couplings that are induced by the wormholes. In particular,

the cosmological constant is given by

Λ = 1/max
!λ

Crad(#λ), (55)
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dz
1

z
√

Λcr

∼ 1√
Λcr

log zIR, (53)

The cutoff zIR should be explained from a microscopic theory of gravity such as string

theory. For example, in the IIB matrix model space-times emerge dynamically from

the matrix degrees of freedom, and an infrared cutoff appears effectively, which is

proportional to some power of the matrix size [?,?,?].

If we consider the case of (??), where the curvature term balances with the radi-

ation, (??) is proportional to
√

Crad log zIR, and the integrand of the density matrix

(??) behaves as

exp

(
const. ×

√
Crad log zIR

)
, (54)

which has an infinitely strong peak at a point in the {λi} space where Crad becomes

maximum. Here, we have assumed that |µ|2 does not have a strong dependence on

{λi} because it is determined by the microscopic dynamics of smaller scales than the

wormholes. Thus we have seen that all the couplings {λi} are fixed in such a way

that Crad is maximized. We call it the big fix following Coleman. In the original

Coleman’s argument the enhancement comes from the action itself, or equivalently,

the exponential factor in the wave function (??), while it comes from the prefactor in

our case. We will discuss this meaning in the next subsection. We also note that the

big fix applies only to the couplings that are induced by the wormholes. In particular,

the cosmological constant is given by

Λ = 1/max
!λ

Crad(#λ), (55)
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12     is determined in such a way that　              is maximized, 
and the CC  is given by                                         . 

4.2 Density Matrix of Our Universe

We now can obtain the density matrix of our universe by tracing out the other universes

and the baby universes, namely !λ. Using (??), we can calculate it as

ρ(z′, z) =
∞∑

N=0

∫
dzN

i

N !
Φ∗

N+1(z
′, z1, · · · , zN)ΦN+1(z, z1, · · · , zN)

=
∞∑

N=0

1

N !

∫ ∞

−∞
d!λ |µ|2φ(z′)∗φ(z) ×

(∫
dz

′′|µφ(z
′′
)|2

)N

=

∫ ∞

−∞
d!λ |µ|2 φ(z′)∗φ(z) × exp

(∫
dz

′′|µφ(z
′′
)|2

)
, (43)

where z and z′ are the size of our universe. We note that the above integrand depends

on {λi} through the wave function φ.

5 Vanishing Cosmological Constant

In this section, we show that the integrand in (??) has a strong peak at a point in the

{λi} space where the cosmological constant Λ = Λ({λi}) becomes very small, which

means the cosmological constant problem is automatically solved. We also discuss the

possibility of the big fix.

5.1 Evaluation of the Density Matrix

In this subsection, we examine how the exponent in the density matrix (??),
∫ ∞

0

dz
′′|µφ(z

′′
)|2, (44)

depends on Λ.

First we sketch the potential U(z) in (??). Again we assume that all the universes

have the topology of S3 (K = 1), so that U(z) is given by

2U(z) = −k2(z) = −9Λ +
1

z2/3
− 2Cmatt

z
− 2Crad

z4/3
. (45)

For large z, the leading term is the cosmological constant Λ, and the next leading term

is the curvature term. We note that only the curvature term is positive, and U(z) has

a maximum at one point z = z∗,

U ′(z∗) = 0. (46)
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Meaning of the Enhancement 

Equal to lifetime of  universe 

→the probability finding small Λ is enhanced. 

small Λ 
long lifetime 

large Λ 
short lifetime 
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From the WKB sol., the exponent can be written as Thus, (??) can be written as
∫

dz |φ(z)|2 =

∫ zIR

ε

dz
1

zk(z)
=

∫ zIR

ε

dz

ż
, (61)

which is nothing but the time it takes for the universe to grow from the size ε to

zIR. Since we have imposed the cutoff zIR on the size of the universe, a universe with

the size larger than zIR does not exist10. Thus, (??) can be interpreted as the time

duration in which the universe exists. We call it the lifetime of the universe, for

simplicity.

In fact, we can verify this interpretation without relying on the WKB approxima-

tion. We recall the normalization of the wave function

〈φ′
E|φE〉 = δ(E − E ′), (62)

which leads to ∫
dz |φ(z)|2 ∼ δ(0). (63)

As is usually done in the derivation of Fermi’s golden rule, δ(0) is regarded as the

total interval of time, which in our case is naturally interpreted as the duration of the

universe.

Therefore, what the big fix does is to make the lifetime of the universe as long as

possible. Based on this interpretation, we can reproduce the results obtained in the

last subsection. First we note that, for Λ < Λcr, the universe cannot reach to zIR

because of the potential barrier (see Fig.??), and collapses back to the size ε and then

disappears in finite time (see Fig.??(a)).11 So we concentrate on the case Λ ≥ Λcr. As

we vary Λ, the depth of the potential changes as in Figure ??. The shallower potential

gives the longer lifetime, and thus the lifetime becomes maximum at Λ = Λcr (see

Fig.??(b) and (c)).

Before closing this subsection, we emphasize the general validity of our mechanism.

So far, we have used the mini-superspace approximation, in which only the size of the

universe is considered, and the other degrees of freedom such as various fields and

10Although we have not specified the infrared cutoff precisely, we can simply imagine that when a
universe reaches the size zIR, it ceases to exist , or it bounces back and starts shrinking towards the
size ε.

11Quantum mechanically, the universe can reach to zIR after tunneling for 0 < Λ < Λcr, but
because of the tunneling suppression such Λ does not contribute much, as we have discussed in the
last subsection.
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4.2 Density Matrix of Our Universe

We now can obtain the density matrix of our universe by tracing out the other universes

and the baby universes, namely !λ. Using (??), we can calculate it as

ρ(z′, z) =
∞∑

N=0

∫
dzN

i

N !
Φ∗

N+1(z
′, z1, · · · , zN)ΦN+1(z, z1, · · · , zN)

=
∞∑

N=0

1

N !

∫ ∞

−∞
d!λ |µ|2φ(z′)∗φ(z) ×

(∫
dz

′′|µφ(z
′′
)|2

)N

=

∫ ∞

−∞
d!λ |µ|2 φ(z′)∗φ(z) × exp

(∫
dz

′′|µφ(z
′′
)|2

)
, (43)

where z and z′ are the size of our universe. We note that the above integrand depends

on {λi} through the wave function φ.

5 Vanishing Cosmological Constant

In this section, we show that the integrand in (??) has a strong peak at a point in the

{λi} space where the cosmological constant Λ = Λ({λi}) becomes very small, which

means the cosmological constant problem is automatically solved. We also discuss the

possibility of the big fix.

5.1 Evaluation of the Density Matrix

In this subsection, we examine how the exponent in the density matrix (??),
∫ ∞

0

dz
′′|µφ(z

′′
)|2, (44)

depends on Λ.

First we sketch the potential U(z) in (??). Again we assume that all the universes

have the topology of S3 (K = 1), so that U(z) is given by

2U(z) = −k2(z) = −9Λ +
1

z2/3
− 2Cmatt

z
− 2Crad

z4/3
. (45)

For large z, the leading term is the cosmological constant Λ, and the next leading term

is the curvature term. We note that only the curvature term is positive, and U(z) has

a maximum at one point z = z∗,

U ′(z∗) = 0. (46)
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We treat the quartic coupling λｈ as dynamical, 
assuming that the other parameters in the SM are fixed 
at the experimentally observed values. 

Example of the big fix 
Which couplings are dynamical? 

We focus on the Higgs potential. 

In particular, vh is fixed at 246 GeV. 

We consider what value of λh makes the radiation maximum. 



Higgs mass 
If proton decays, the radiation energy in the future is 
dominated by the radiation produced by its decay.   

Thus, λh is determined in such a way that  
the proton number        in the universe is 
maximized. 

Most baryons are produced in the symmetric 
phase in the leptogenesis. 

 the symmetric phase lasts longer 

assuming the leptogenesis 

 has a lower bound from the stability of pot.:  

mHiggs !140± 20GeV.
    　 



6. Summary 



Summary 
In the quantum gravity or matrix model, the multiverse 
naturally appears, and it becomes a superposition of 
satates with various values of the coupling constants.  
 
The coupling constants are fixed is such a way that the 
lifetime of the universe is maximized. 

For example the cosmological constant in the far futre is 
predicted to be very small:                         . 

Other operators? 
Comparison of different dimensional space-time? 
Generalization to the landscape? 

Future work 

! z "#( ) ! 0
The Higgs mass is predicted at its lower bound provided 
by the stability of the potential. 


