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1. Introduction: 1D surface growth

Paper combustion, bacteria colony, crystal

growth, liquid crystal turbulence

Growing interface between two regions

Non-equilibrium statistical mechanics

Integrable systems

Is matrix model?
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Basics: Simulation models

Ex: ballistic deposition model, Eden model

100 T T T T T T T

“ht10.dat"
"ht50.dat"
"ht100.dat"

* X +

K,

K KK, K Ky K

K K KK, E K KKK A

K, KK (K K L RKTK, K, KRR K, K KK *

bk SRR KN KN K * % K XXXX %
*

60 9

20 B

+ F
P e T e T R T R

+ ot
0 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100

-+
+ + I
L e TR e
+ +




A different type of growth

Diffusion limited aggregation(DLA)...SLE?




Scaling

h(x,t): surface height at position  and at time ¢

Scaling (L: system size) = [yl ¥

W (L,t) = ((h(z,t) — (h(z,t)))*)"/?
— LoW(t/L?) x

Fort > o0 W(L,t) ~ L*

Fort ~0 W(L,t) ~t° where a = 3z

In many models, « = 1/2,3 =1/3 1""10""103"Ibuo 1os

Figure 1. Interface width W versus time ¢ for the RSOS model

Dynamical exponent PA— 3/2 Anlsotroplc Scaling (Ref. [11])in 1 41 dimensions, in two different latice lengths L.



KPZ equation

(not Knizhnik-Polyakov-Zamolodchikov)

Oith(x,t) = %)\(Bmh(a:, t))? + vd2h(x,t) + v Dn(z,t)
where m is the Gaussian noise with covariance
(n(z, t)yn(z’,t')) = o(x — x')o(t — ')

e Dynamical RG analysis: h(x = 0,t) ~ vt + c£t/3

KPZ universality class
e The Brownian motion is stationary.
e The issue of well-definedness.

e Now revival: New analytic and experimental developments



Another KPZ

e MBT-70 / KPz 70

Tank developed in 1960s by US and West Germany.
MBT(MAIN BATTLE TANK)-70 is the US name and
KPz(KampfPanzer)-70 is the German name.




2. Random matrix theory

Gaussian ensembles

H: N x N matrix

1
P(H)dH = e~ 2 TrH?
Zng

GOE(8 = 1), GUE(B = 2), GSE(3 = 4)

Joint eigenvalue distribution

1

PN,@(mlaw2a°°°amN) — Z—NB

N
[ @i-=2)?[]e "
1=1

1<i<j<N



Largest eigenvalue distribution

Largest eigenvalue distribution of Gaussian ensembles

1

PNa[Tmax < 8] = —— H(:ci—wj)ﬁ He_gw?dwl .-

ZNﬁ (—oo,s]V i<j i

Scaling limit (expected to be universal)

lim Pngs [(azmax — \/ZN)\/§N1/6 < s] = F3(s)

N —o0

GUE (GOE,GSE) Tracy-Widom distribution

-d:UN



Tracy-Widom distributions
GUE Tracy-Widom distribution

F>(s) = det(1 — Ps Ky Ps)

where Ps: projection onto [s,00) and K3 is the Airy kernel

oo

Ko(x,y) = /0 dAAi(xz + M) Ai(y + )

Painlevé Il representation

F>(s) = exp [— /:o(:c — s)u(x)?*dx

where u(x) is the solution of the Painlevé Il equation
82
——u = 2u’ +zu, u(x)~ Ai(x) x— o0
ox?
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GOE Tracy-Widom distribution
1 o @)

Fi(s) = exp |~ [ u@)de| (Fa(s))/3
GSE Tracy-Widom distribution

F4(s) = cosh [—; /:O U(m)dw] (Fa(s))'/?

Figures for Tracy-Widom distributions

Probability densities

11



Time dependent version: Dyson’s BM model
1 .
S = /thTr(Mz + M?)

Or, each matrix element performs the Ornstein-Uhlenbeck

process(Brownian motion in a harmonic potential).

Dynamics of eigenvalues

A kind of vicious walk

m
W_/
~—__——" >~ Dynamics of largest eigenvalue

— o = Airy process
/_’IWJ

1 t2

t
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3. Surface growth and random matrix

A discrete model: ASEP(asymmetric simple exclusion process)

q P q p q

- {Jol ‘oo ‘@

Mapping to surface growth
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A few comments on ASEP

e Some applications
— Traffic flow
— lonic conductor

— Ribosome on mRNA, Molecular motor

e A standard model in nonequilibrium statistical physics
— A system far from equilibrium
— Shock wave
— Boundary induced phase transitions

— Exactly solvable
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Stationary measure

ASEP - .. Bernoulli measure: each site is independent and

occupied with prob. p (0 < p < 1). Current is p(1 — p).

p | p | P | P | P | P | P

-3 -2 -1 0 1 2 3

Surface growth - -+ Random walk height profile
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Surface growth and 2 initial conditions besides stationary

Flat

Wedge /\/\/\/\

Step Alternating

Integrated current N (x,t) in ASEP < Height h(x,t) in surface
growth
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Connection to random matrix:

TASEP(Totally ASEP, hop only in one direction)
Step initial condition (¢t = 0)

-3 -2 -1 0 1 2 3

N (t): Number of particles which crossed (0,1) up to time ¢

1
PIN() > N] = /[ @ e - dax
U i< i

(cf. chiral GUE)
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Zero temperature directed polymer
e Time at which INth particle arrives at the origin
( )

= max X Z Wi 5 ¢

up-right paths from o
(1,1)to(IN,NN) \ (¢,J) on a path )

w;; on (2, 7): exponentially distributed

waiting time of ¢th hop of jth particle

(1, 1)

z,=
e RSK algorithm = Combinatorics of Young tableaux

(cf. Schur measure — Plancherel measure — Gross-Witten)
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Dynamics on Gelfand-Zetlin Cone

Blocking and pushing dynamics

1
€Ly
2 2
€Ly Lo
3 3 3
Ly Lo L3
n n n n
Ly Lo Lg L1
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Current distributions for ASEP with wedge initial conditions
(TASEP) (ASEP)

N(0,t/(qg — p)) ~ 5t — 27 */3¢ 3¢y

Here N (x = 0,t) is the integrated current of ASEP at the origin
and &tw obeys the GUE Tracy-Widom distributions;

Frw(s) = Plérw < s| = det(1 — PsKa;Ps)os

0.4

0.3r

where K aj is the Airy kernel ool
Kai(x,y) = / dAAi(x + M) Ai(y + \) "
0 S
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Current Fluctuations of TASEP with flat initial conditions: GOE
TW distribution

More generalizations: stationary case: Fy distribution, multi-point

fluctuations: Airy process, etc
Experimental relevance?

What about the KPZ equation itself?

21



4. Experiments by liquid crystal turbulence

2010-2011 Takeuchi Sano
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Figure 2 | Family-Vicsek scaling. a,b, Interface width w{l, r) against the length scale [ at different times t for the circular (a) and flat (b} interfaces.
The four data correspond, from bottom to top, to t = 2.0 5,4.0 s, 12.0 sand 30.0 s for the panel aand to t = 4.0 5, 10.0 5, 25.0 sand 60.0 s for the panel b.

The insets show the same data with the rescaled axes. ¢, Growth of the overall width W(t) =4/ [h{x.t) — {h)ll:: The dashed lines are guides for the eyes
showing the exponent values of the KPZ class.
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Figure 3 | Universal luctuations. a, Histogram of the rescaled local height 3 = [ — 2.0/ (T The blue and red salid symbaols show the histograms for
the circular interfaces at t = 10 s and 30 s; the light Blue and purple open symbols are for the flat interfaces at ¢ = 20 s and 80 s, respectively. The dashed
and dotted curves show the GUE and GOE TW distributions, respectively. MNote that for the GOE TW distribution y is multiplied by 27" in view of
the theoretical prediction™. b, The skewness (cirele) and the kurtosis (cross) of the distribution of the interface fluctustions for the ciscular {blue) and flat
[red) interfaces. The dashed and dotted lines indicate the values of the skewness and the kostasis of the GUE and COE TW distributions". ¢, d, Differences
in the cumulants between the experimental data {x%). and the corresponding TW distributions {xf,z ), for the ciroclar interfaces (¢} and {pfoe )

for the flat interfaces [d). The insets show the sarme data for 2 = 1 in logarithmic scales, The dashed lines are guides for the eyes with the slope —1/3,

See Takeuchi Sano Sasamoto Spohn, Sci. Rep. 1,34(2011)
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5. The narrow wedge KPZ equation

Remember the KPZ equation

Oth(x,t) = %)\(&Bh(w,t))2 + u@ih(m,t) + \/ﬁn(wvt)

e Narrow wedge initial condition

e Based on (i) the fact that the weakly ASEP is KPZ equation
( ) and (ii) a formula for step ASEP by

e The explicit distribution function for finite ¢

e The KPZ equation is in the KPZ universality class

24



Narrow wedge initial condition

Scalings A
r — o’x, t— 2va*t, h— 2—h
v
where o = (2v)~3/2AD1/2.
We can and will do set v = %,)\ =D =1.

We consider the droplet growth with macroscopic shape

.

—x2 /2t for |x¢| < t/6,

h(x,t) = <
\(1/252)15 — |x|/d for |x| >t/

which corresponds to taking the following narrow wedge initial

conditions: h(x,0) = —|z|/6, 6 <K1

25



A h(X,t)

26




Distribution

h(x,t) = —x2/2t — 1—12’)’5’ + Ye&i
where ~v; = (2t)~1/3.

The distribution function of &;

& @)

Fi(s) =Pl& < s] =1 — /_ exp | — e'ﬁ(s_“)]

X(det(l — P, (Bt — Pa;)P,) — det(1 — PuBtPu))du

where Pai(x,y) = Ai(x)Ai(y) .

27



P, is the projection onto [u, 00) and the kernel By is

Bi(z,y) = Kai(w,y) + / dA(e7* — 1)~
0

x (Ai(z 4+ A)Ai(y + A) — Ai(z — A)Ai(y — N)).

A question: Random matrix interpretation?

28



Toda lattice

replica

Developments

Replica
Half-BM by step Bernoulli ASEP

A directed polymer model related to quantum

Multi-point distributions by replica
Flat case by replica
Tropical RSK for inverse gamma polymer
Macdonald process

Half-BM and stationary case by

29



6. Stationary case

e Narrow wedge is technically the simplest.

e Flat case is a well-studied case in surface growth

e Stationary case is important for stochastic process and
nonequilibrium statistical mechanics
— Two-point correlation function
— Experiments: Scattering, direct observation

— A lot of approximate methods (renormalization,

mode-coupling, etc.) have been applied to this case.

— Nonequilibrium steady state(NESS): No principle.
Dynamics is even harder.

30



Modification of initial condition

Two sided BM

.
B_(—CB), x <0,

h(x,0) =
\B_|_(:c), x > 0,

where B4 (x) are two independent standard BMs

We consider a generalized initial condition

( ~
B(— _x, 0,
h(z,0) = ¢ (-z) + vz, =<

\B(:L') — vy, x > 0,

where B(x), B(x) are independent standard BMs and v are
the strength of the drifts.
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Result

For the generalized initial condition with v+
F,. t(s) := Prob [h(z,t) + v} /12 < 5]

—_ I‘(,U+ _I_ ’U_) [1 /00 d —ert(s—u)
— — — ue
I'(vy +v— +~, "d/ds) —oo

Here v, (w) is expressed as a difference of two Fredholm

szl:,t(u’)

determinants,
Vo, t(u) = det (1 — P,(B; — P,)P,) —det (1 — P,B/P,),

where Ps represents the projection onto (s, 00),

. 1 _ 1
P,AI\;(glv 52) — A'F (619 73”—9”4—) A'F (529 77”4—7”—)
t t

32



oo

1
B{(sla 52) — / dy ! Ai; (51 + v, 7’U—9’U—I—)

oo 1 — ety Yt

T 1
XA'r fz—l—’y,—,’l)_|_,0_ 9

Yt

and

1 . .28 T (2b d
AL (a, b, c,d) = — / dzeiatiy L0z +d)

21 Jr I' (—ibz + ¢)
%

where I', | represents the contour from —oo to oo and, along the

way, passing below the pole at z = 2d/b.
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Height distribution for the stationary KPZ equation

1 oo
T'(1+~; 'd/ds) /-

where v ¢(u) is obtained from v, ;(u) by taking v+ — 0 limit.

Fo,t(S) =

0.4¢
03f
02f

0.1f

0.0k

Figure 1: Stationary height distributions for the KPZ equation for

v+ = 1 case. The solid curve is Fy.
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Stationary 2pt correlation function

C(z,t) = ((h(z,t) — <h’($9t)>)2>
g (y) = (20)7*/3C ((20)*/%y, ¢)

20f V=1 - - -

05f

oob— o vy TS -

Figure 2: Stationary 2pt correlation function g;’(y) for v+ = 1.

The solid curve is the corresponding quantity in the scaling limit

9" (y).
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Derivation

Cole-Hopf transformation

h(z,t) = log (Z(x,t))

Z(x,t) is the solution of the stochastic heat equation,

0Z(x,t) 108°Z(x,t)
ot 2 Ox?

and can be considered as directed polymer in random potential 7.

+ n(z,t)Z(x,t).

cf. Well-posedness of KPZ equation without Cole-Hopf
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Feynmann-Kac and Generating function

Feynmann-Kac expression for the partition function,
t
2(e,) = Ex (exp | [ n(b(s),t = 5) ds| 2(0(t),0))
0

We consider the N'th replica partition function {Z (x,t)) and
compute their generating function G¢(s) defined as
> (—e_'VtS)N 2te

Gi(s) = ZN(0,t)) eV 12
NEZ:O T )

with ¢ = (/2)1/3.
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0-Bose gas

Taking the Gaussian average over the noise i, one finds that the

replica partition function can be written as

(ZN (x,t))
N 0o xj(t)== I t N
= H/_ dyj/'(o): Dlz;j(r)] exp —/O dr | ;(
N | _ N
— Y & (zi(r) —a(7)) | | X <eXp (Z h(yk,0)>>
jAk=1 | k=1

= (z]e” "N ).
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H ; is the Hamiltonian of the d-Bose gas,

1N 2 1 Y
Hy=—-2) ———5 ) 0@ — ),
j=1 9%; ik

|®) represents the state corresponding to the initial condition. We
compute (Z™N (x,t)) by expanding in terms of the eigenstates of
Hpy,

(Z(z,)N) = ) (@|T:)(V.|®)e P

where E, and |W,) are the eigenvalue and the eigenfunction of
HNZ HNl\Ifz> = Ezl\Ilz>.
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The state |®) can be calculated because the initial condition is
Gaussian. For the region where

1 <...<<0<x11<...<2N, 1 SIS Nitis
given by

(T1,+++ ,ZzN|P) = e~ Yi=1 @i =0+ jli4 @

l N-—1
> H e%(zl—zj+1)mj H e%(N—l—zj-|-1)ml+j
71=1 71=1

We symmetrize wrt 1,...,TN.
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Bethe states
By the Bethe ansatz, the eigenfunction is given as

<w19' . 933N|\I'z> = C, Z sgn P
PeSn

X H (ZP(_’]) — Zp(k) T ZSgn(fL’g — ka) exp < Z ZP(l)CW)

1<j<k<N

N momenta z; (1 < 3 < NN) are parametrized as

a—1

zj = ¢ ——(na—|—1—2ra), for]—z'ng—l—'ra
B=1
(1<a< Mandl<ry <ng). They are divided into M
groups where 1 < M < N and the ath group consists of ng

’s which shares the common real part q..

guasimomenta Z;
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1/2

1<j<k<N '7J
M M
1

N
DD SRR D DU (GRS N

a=1

o, =  Haz17e I !
© N! |z; — zp — 2|2
1
2

Expanding the moment in terms of the Bethe states, we have

(ZN (, 1))
N a1t N oo o M dge, &
= MZ: M1 1} /_oo W (/_oo 1] on Z;) OS M mp,N

X e_Ezt<$|\Pz><\I’z|y17”’ 9yN><y19°°' 7yN|(I)>

The completeness of Bethe states was proved by
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We see

(I,|®) = N!C, Z sgn P H (z}';(j) — Zpu) t z)

PeSN 1<j<k<N
>< z< 1) H .
23 1(_ZZP +v_) —m?/2
N —1 1
X

N : y
m=1 Zj:N—m+1(_ZZ}ij —vy) +m?2/2
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Combinatorial identities

(1)
Z sgnP H (wp) — wpr) + tf (4, k))
PeSN 1<j<k<N
= IN! H (wj — ’wk)
1<j<k<N

44



2)For any complex numbers w; (1 < 7 < IN) and a,
J

> senP || (wpy) —wpw) + a)
PeSN 1<j<k<N

: 1

N
Y
X ;}( 1) H ZTzl(wP(j) +v_) — m2a/2

m=1

N -1 1

N
m=1 Zj:N_m+1(ij — vy) + mPa/2

[ (o4 +v— = am) [T o5 cpen (w5 — wk)
[N _ ) (Wi +v— — a/2) (W — vy + a/2)

X

A similar identity in the context of ASEP has not been found.
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Generating function

—e ’ytS)N

Gils) = 3 H(v+ +v_ —1) Z

N=01=1
M oo oo
a=1 Na=

dq e_'yf'"’jqz"‘g"? —nj(wjtwr)—2iq(w; —wk)
det /

C
(—zq Tu-+ (ng —2r))(iq + vy + - (n‘7 — 27))
\ r=1 )

where the contour is C' = R — 2c with ¢ taken large enough.

46



This generating function itself is not a Fredholm determinant due
to the novel factor Hl]i1(”+ +v_ —1).

We consider a further generalized initial condition in which the
initial overall height x obeys a certain probability distribution.

h=h+x

where h is the original height for which h(0,0) = 0. The
random variable x is taken to be independent of h.

Moments <€Nl~z> _ <€Nh><6NX>.
We postulate that x is distributed as the inverse gamma
distribution with parameter v4 4+ v_, i.e., if 1/x obeys the

gamma distribution with the same parameter. Its Nth moment is
1/ Hl]\;l(m_ + v_ — 1) which compensates the extra factor.
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Distributions

F(S) — ﬁ(s)v

k(Y g
where F'(s) = Prob[h(0,t) < ~;s],
F(s) = Prob[h(0,t) < ~4s] and k is the Laplace transform of
the pdf of x. For the inverse gamma distribution,

k(§) = T'(v+ &)/T'(v), by which we get the formula for the
generating function.
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Summary

e Some surface growth models are related to random matrix.

e [he developments in the last 12 years allow us to study also
the KPZ equation.

e \We have presented some formulas for the height distributions

and stationary two point correlation functions.

49



