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Chern-Simons-matter matrix models

A family of matrix models are defined by the partition functions:
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gauge group H U(N ,) i, On S°. [Kapustin, Willet, Yaakov]
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Interesting quatities in CSM matrix models:
*Freeenergy  Fog (N, k)= F,.[N,.k)

This was calculated for various CSM including 1/N corrections.

[Marino, Putrov][Klebanov et al.][Fuji, Hirano, Moriyama] etc.
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—  Planar limit was solved for ABJM theory. [Marino, Putrov]

Note: Large 't Hooft coupling limit is interesting for AdS/CFT.
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if x_.  1s large.
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Saddle-point equations

In the large N limit, the saddle-point approx. becomes exact.

27[1

27[1

N, _
Z coth - uj — Z tanh - va
J#i =
coth — 3 tanh _ ,
Z Z i
b#a 2

[ABIM]

[Gaiotto, Tomasiello]

for U(N,), XU(N,), CS theory coupled to 2 bi-fund. matters.
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To solve the saddle-point eqgs. define the resolvent:
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An integral formula for the resolvent: [TS]
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The 't Hooft couplings are derived from the resolvent as
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Therefore,

Large 't Hooft coupling <> long branch cut

——>  This observation enables us to derive qualitative results
from the integral representation of the resolvent.



A simplification: In the limit |a|, |d | — 00,

x=a)(x=b)(x—c)(x=d)| = |xl+lad],

for most of the range of integration. \
simple!

—— Evaluation of the integral becomes possible.
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x=a)(x=b)(x—c)(x=d)| = |xl+lad],

for most of the range of integration. \
simple!

A simplification: In the limit |a|, |d| — oo,

—— Evaluation of the integral becomes possible.

A subtlety: 't Hooft couplings must be purely imaginary while
real a,b,c,d give real ones.

— Integration contours have to be deformed,

while keeping ab=1, cd=1.

(Analytic continuation of the parameters.)
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Massless/massive cases can be described uniformly.



e The large A behavior has been determined.

e The perturbative behavior can be easily determined from
saddle-point equations.

» A smooth interpolation 1s given by integral expression.
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e The large A behavior has been determined.

e The perturbative behavior can be easily determined from
saddle-point equations. [TS]

» A smooth interpolation 1s given by integral expression.

——>  Enough information for physicists !

E.g. ABJM theory:
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Generalization of our method seems to be difficult...
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Even integral expression of the resolvent 1s difficult to obtain.
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corresponding to N=3 CS theory coupled to », bi-fund. matters.

Even integral expression of the resolvent 1s difficult to obtain.

Note: Similarity to 2-dim. gravity coupled to O(n) model,

2 1 n |
Vile,)=— — : Eynard, Kristjansen
( ) N]Z;é; (I)i_q)j NZ]: q)i+q)j [EY : ]

The case n = 2 1s much easier than the other cases.



Summary

 Planar resolvent for a CSM theory is determined in an integral form.

e [t 1s used to determine the large 't Hooft coupling limit which i1s
relevant for AdS/CFT correspondence.

e Massless IIA/massive ITA are discussed in a uniform manner.

e Heavy machinery is not necessary.

Open 1ssues:

» Generalization to more general CSM.

* Another large 't Hooft coupling behavior?
(for models with long-range eigenvalue interactions?)

* ctc.
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