# Eigenvalue Distributions of Matrix Models for Chern-Simons-matter Theories

Takao Suyama (Seoul National Univ.)

Ref: Nucl.Phys. **B856** (2012) 497, arXiv:1106.3147 JHEP **1010** (2010) 101, arXiv:1008.3950 Nucl.Phys. **B834** (2010) 50, arXiv:0912.1084

## Chern-Simons-matter matrix models

A family of matrix models are defined by the partition functions:

$$Z = \int \prod_{l=1}^{n} \prod_{i_{l}=1}^{N_{i}} du_{l,i_{l}} e^{-S}$$

$$S = S_{\text{tree}} + S_{\text{vector}} + S_{\text{matter}}$$

where

$$S_{\text{tree}} = \sum_{l,i_{l}} \frac{k_{l}}{4\pi i} (u_{l,i_{l}})^{2}$$

$$S_{\text{vector}} = -\sum_{l} \sum_{i_{l} < j_{l}} \log \left[ \sinh^{2} \frac{u_{l,i_{l}} - u_{l,j_{l}}}{2} \right]$$

$$S_{\text{bi-fund}} = \sum_{i,j} \log \left[ \cosh \frac{u_{l,i_{l}} - u_{l',j_{l'}}}{2} \right]$$

They are associated with N=3 Chern-Simons-matter theories with gauge group  $\prod_{l} U(N_l)_{k_l}$  on  $S^3$ . [Kapustin, Willet, Yaakov]

## Chern-Simons-matter matrix models

A family of matrix models are defined by the partition functions:

$$Z = \int \prod_{l=1}^{n} \prod_{i_{l}=1}^{N_{l}} du_{l,i_{l}} e^{-S}$$

$$S = S_{\text{tree}} + S_{\text{vector}} + S_{\text{matter}}$$

where

$$S_{\text{tree}} = \sum_{l,i_l} \frac{k_l}{4\pi (i)} (u_{l,i_l})^2$$

$$S_{\text{vector}} = -\sum_{l} \sum_{i_l < j_l} \log \left[ \frac{u_{l,i_l} - u_{l,j_l}}{2} \right] - \text{repulsive}$$

$$S_{\text{bi-fund}} = \sum_{i_l,j_l} \log \left[ \frac{u_{l,i_l} - u_{l',j_l}}{2} \right] - \text{attractive}$$
etc.

They are associated with N=3 Chern-Simons-matter theories with gauge group  $\prod_{l} U(N_l)_{k_l}$  on  $S^3$ . [Kapustin, Willet, Yaakov]

### Interesting quatities in CSM matrix models:

• Free energy 
$$F_{\text{CSM}}(N_l, k_l) = F_{\text{mm}}(N_l, k_l)$$

This was calculated for various CSM including 1/N corrections.

[Marino, Putrov][Klebanov et al.][Fuji, Hirano, Moriyama] etc.

#### Interesting quatities in CSM matrix models:

• Free energy  $F_{\text{CSM}}(N_l, k_l) = F_{\text{mm}}(N_l, k_l)$ 

This was calculated for various CSM including 1/N corrections.

[Marino, Putrov][Klebanov et al.][Fuji, Hirano, Moriyama] etc.

• Wilson loop 
$$\langle W[C] \rangle = \left\langle \frac{1}{N} \sum_{i=1}^{N} e^{u_i} \right\rangle_{\text{mm}}$$

BPS Wilson loops were constructed and valuated perturbatively.

[Drukker, Plefka, Young][Drukker, Trancanelli][Chen, Wu][Rey, TS, Yamaguchi]

Planar limit was solved for ABJM theory. [Marino, Putrov]

#### Interesting quatities in CSM matrix models:

• Free energy  $F_{\text{CSM}}(N_l, k_l) = F_{\text{mm}}(N_l, k_l)$ 

This was calculated for various CSM including 1/N corrections.

[Marino, Putrov][Klebanov et al.][Fuji, Hirano, Moriyama] etc.

• Wilson loop 
$$\langle W[C] \rangle = \left\langle \frac{1}{N} \sum_{i=1}^{N} e^{u_i} \right\rangle_{\text{mm}}$$

BPS Wilson loops were constructed and valuated perturbatively.

[Drukker, Plefka, Young][Drukker, Trancanelli][Chen, Wu][Rey, TS, Yamaguchi]

Planar limit was solved for ABJM theory. [Marino, Putrov]

Note: Large 't Hooft coupling limit is interesting for AdS/CFT.

$$\langle W[C] \rangle = \int dx \, \rho(x) e^x \sim e^{x_{\text{max}}}$$
if  $x_{\text{max}}$  is large.

## Saddle-point equations

In the large N limit, the saddle-point approx. becomes exact.

$$\frac{k_1}{2\pi i} u_i = \sum_{j \neq i}^{N_1} \coth \frac{u_i - u_j}{2} - \sum_{a=1}^{N_2} \tanh \frac{u_i - v_a}{2},$$

$$\frac{k_2}{2\pi i} v_a = \sum_{b \neq a}^{N_2} \coth \frac{v_a - v_b}{2} - \sum_{i=1}^{N_1} \tanh \frac{v_a - u_i}{2},$$
[Gaiotto, Tomasiello]

for  $U(N_1)_k \times U(N_2)_k$  CS theory coupled to 2 bi-fund. matters.

# Saddle-point equations

In the large N limit, the saddle-point approx. becomes exact.

$$\frac{k_{1}}{2\pi i}u_{i} = \sum_{j\neq i}^{N_{1}}\coth\frac{u_{i}-u_{j}}{2} - \sum_{a=1}^{N_{2}}\tanh\frac{u_{i}-v_{a}}{2},$$

$$\frac{k_{2}}{2\pi i}v_{a} = \sum_{b\neq a}^{N_{2}}\coth\frac{v_{a}-v_{b}}{2} - \sum_{i=1}^{N_{1}}\tanh\frac{v_{a}-u_{i}}{2},$$
[Gaiotto, Tomasiello]

[ABJM]

for  $U(N_1)_k \times U(N_2)_k$  CS theory coupled to 2 bi-fund. matters.

Introducing  $z_i = e^{u_i}$  etc. makes these eqs. more familiar:

$$\coth \frac{u_i - u_j}{2} = 1 - \frac{2z_j}{z_i - z_j}, \quad \tanh \frac{u_i - v_a}{2} = 1 - \frac{2w_a}{z_i + w_a}.$$

Two-cut solution for log-type external force.



# Saddle-point equations

In the large N limit, the saddle-point approx. becomes exact.

$$\frac{k_1}{2\pi i} u_i = \sum_{j \neq i}^{N_1} \coth \frac{u_i - u_j}{2} - \sum_{a=1}^{N_2} \tanh \frac{u_i - v_a}{2},$$

$$\frac{k_2}{2\pi i} v_a = \sum_{b \neq a}^{N_2} \coth \frac{v_a - v_b}{2} - \sum_{i=1}^{N_1} \tanh \frac{v_a - u_i}{2},$$
[Gaiotto, Tomasiello]

[ABJM]

for  $U(N_1)_k \times U(N_2)_k$  CS theory coupled to 2 bi-fund. matters.

Introducing  $z_i = e^{u_i}$  etc. makes these eqs. more familiar:

$$\coth \frac{u_i - u_j}{2} = 1 - \frac{2z_j}{z_i - z_j}, \quad \tanh \frac{u_i - v_a}{2} = 1 - \frac{2w_a}{z + w_a}.$$

Two-cut solution for log-type external force.



To solve the saddle-point eqs. define the resolvent:

$$v(z) = t_1 \int_{c}^{d} dx \, \rho_1(x) \frac{x}{z - x} - t_2 \int_{a}^{b} dx \, \rho_2(x) \frac{x}{z - x}$$

where

$$t_1 = \frac{2\pi i N_1}{k}, \quad \rho_1(x) = \frac{1}{N_1} \sum_{i=1}^{N_1} \delta(x - z_i)$$
 etc

Note: the planar limit is defined as

$$N_1, N_2, k_1, k_2 \propto k, \quad k \to \infty$$



To solve the saddle-point eqs. define the resolvent:

$$v(z) = t_1 \int_{c}^{d} dx \, \rho_1(x) \frac{x}{z - x} - t_2 \int_{a}^{b} dx \, \rho_2(x) \frac{x}{z - x}$$

where

$$t_1 = \frac{2\pi i N_1}{k}, \quad \rho_1(x) = \frac{1}{N_1} \sum_{i=1}^{N_1} \delta(x - z_i)$$
 etc

Note: the planar limit is defined as

$$N_1$$
,  $N_2$ ,  $k_1$ ,  $k_2 \propto k$ ,  $k \to \infty$ 



The resolvent satisfies

$$\kappa_1 \log y - t = v(y + i0) + v(y - i0), \quad (c < y < d)$$

$$\kappa_2 \log(-y) - t = v(y + i0) + v(y - i0), \quad (a < y < b)$$

where

$$t = t_1 + t_2$$
,  $\kappa_1 = \frac{k_1}{k}$ ,  $\kappa_2 = \frac{k_2}{k}$ .

$$v(z) = \kappa_1 \int_{c}^{d} \frac{dx}{2\pi} \frac{\log(e^{-t/\kappa_1}x)}{z-x} \frac{\sqrt{(z-a)(z-b)(z-c)(z-d)}}{\sqrt{|(x-a)(x-b)(x-c)(x-d)|}}$$
$$-\kappa_2 \int_{a}^{b} \frac{dx}{2\pi} \frac{\log(-e^{-t/\kappa_2}x)}{z-x} \frac{\sqrt{(z-a)(z-b)(z-c)(z-d)}}{\sqrt{|(x-a)(x-b)(x-c)(x-d)|}}$$

$$v(z) = \kappa_1 \int_{c}^{d} \frac{dx}{2\pi} \frac{\log(e^{-t/\kappa_1}x)}{z-x} \frac{\sqrt{(z-a)(z-b)(z-c)(z-d)}}{\sqrt{|(x-a)(x-b)(x-c)(x-d)|}}$$
$$-\kappa_2 \int_{a}^{b} \frac{dx}{2\pi} \frac{\log(-e^{-t/\kappa_2}x)}{z-x} \frac{\sqrt{(z-a)(z-b)(z-c)(z-d)}}{\sqrt{|(x-a)(x-b)(x-c)(x-d)|}}$$

If  $\kappa_1 = -\kappa_2$ , then the following deformation of the contour



enables us to obtain

[Marino, Putrov]

$$v(z) = \log \left[ \frac{e^{-t/2}}{\sqrt{(c+d)-(a+b)}} \left( \sqrt{(z-a)(z-b)} - \sqrt{(z-c)(z-d)} \right) \right].$$

The 't Hooft couplings are derived from the resolvent as

$$t_1 = \oint_{C_{cd}} \frac{dz}{2\pi i} \frac{v(z)}{z}, \quad t_2 = \oint_{C_{ab}} \frac{dz}{2\pi i} \frac{v(z)}{z}.$$

They are functions of a, b, c, d.  $t_1$  will diverge iff  $c \to 0$ .



The 't Hooft couplings are derived from the resolvent as

$$t_1 = \oint_{C_{cd}} \frac{dz}{2\pi i} \frac{v(z)}{z}, \quad t_2 = \oint_{C_{ab}} \frac{dz}{2\pi i} \frac{v(z)}{z}.$$

They are functions of a, b, c, d.  $t_1$  will diverge iff  $c \to 0$ .



Therefore,

This observation enables us to derive qualitative results from the integral representation of the resolvent.

A simplification: In the limit |a|,  $|d| \to \infty$ ,

$$\sqrt{|(x-a)(x-b)(x-c)(x-d)|} \rightarrow |x|\sqrt{|ad|},$$

for most of the range of integration.

simple!

Evaluation of the integral becomes possible.

A simplification: In the limit |a|,  $|d| \to \infty$ ,

$$\sqrt{|(x-a)(x-b)(x-c)(x-d)|} \rightarrow |x|\sqrt{|ad|},$$

for most of the range of integration.

simple!

Evaluation of the integral becomes possible.

A subtlety: 't Hooft couplings must be purely imaginary while real a,b,c,d give real ones.

Integration contours have to be <u>deformed</u>,



while keeping ab=1, cd=1.

(Analytic continuation of the parameters.)

$$t_1 = \frac{\kappa_1 + \kappa_2}{3\pi^2} \alpha^3 + c(\kappa_1, \kappa_2) \alpha^2 + O(\alpha).$$

$$t_1 = \frac{\kappa_1 + \kappa_2}{3\pi^2} \alpha^3 + c(\kappa_1, \kappa_2) \alpha^2 + O(\alpha).$$

$$(1) \quad \kappa_1 + \kappa_2 \neq 0 \qquad (t_1 = t_2 = 2\pi i \lambda)$$

$$|\langle W \rangle| \sim \exp \left[ \frac{\sqrt{3}}{2} \left( \frac{6\pi^3}{\kappa_1 + \kappa_2} \lambda \right)^{1/3} \right] \iff \text{minimal surface in massive IIA}$$
[Gaiotto, Tomasiello]

$$t_1 = \frac{\kappa_1 + \kappa_2}{3\pi^2} \alpha^3 + c(\kappa_{1}, \kappa_2) \alpha^2 + O(\alpha).$$

(1) 
$$\kappa_1 + \kappa_2 \neq 0$$
 analytic continuation of  $\alpha$   $(t_1 = t_2 = 2\pi i \lambda)$   $|\langle W \rangle| \sim \exp\left[\frac{\sqrt{3}}{2}\left(\frac{6\pi^3}{\kappa_1 + \kappa_2}\lambda\right)^{1/3}\right]$  minimal surface in massive IIA [Gaiotto, Tomasiello]

$$t_1 = \frac{\kappa_1 + \kappa_2}{3\pi^2} \alpha^3 + c(\kappa_1, \kappa_2) \alpha^2 + O(\alpha).$$

$$(1) \quad \kappa_1 + \kappa_2 \neq 0$$

analytic continuation of  $\boldsymbol{\alpha}$ 

$$(t_1 = t_2 = 2\pi i\lambda)$$

$$|\langle W \rangle| \sim \exp\left[\frac{\sqrt{3}}{2}\left(\frac{6\pi^3}{\kappa_1 + \kappa_2}\lambda\right)^{1/3}\right] \qquad \Longrightarrow$$

minimal surface in massive IIA

[Gaiotto, Tomasiello]

(2) 
$$\kappa_1 + \kappa_2 = 0$$
  $\longrightarrow$   $c(\kappa_1, \kappa_2) = \frac{i}{\pi}$ 

$$|\langle W \rangle| \sim \exp[\pi \sqrt{2 \lambda}]$$

minimal surface in massless IIA [ABJM]

$$t_1 = \frac{\kappa_1 + \kappa_2}{3\pi^2} \alpha^3 + c(\kappa_1, \kappa_2) \alpha^2 + O(\alpha).$$

(1) 
$$\kappa_1 + \kappa_2 \neq 0$$
 analytic continuation of  $\alpha$   $(t_1 = t_2 = 2\pi i \lambda)$ 

$$|\langle W \rangle| \sim \exp\left[\frac{\sqrt{3}}{2} \left(\frac{6\pi^3}{\kappa_1 + \kappa_2} \lambda\right)^{1/3}\right] \iff \text{minimal surface in massive IIA}$$
[Gaiotto, Tomasiello]

(2) 
$$\kappa_1 + \kappa_2 = 0$$
  $\Longrightarrow$   $c(\kappa_1, \kappa_2) = \frac{i}{\pi}$ 

$$|\langle W \rangle| \sim \exp[\pi \sqrt{2 \lambda}]$$
  $\iff$  minimal surface in massless IIA [ABJM]

Massless/massive cases can be described uniformly.

- The large  $\lambda$  behavior has been determined.
- The perturbative behavior can be easily determined from saddle-point equations.

[TS]

• A smooth interpolation is given by integral expression.

- The large  $\lambda$  behavior has been determined.
- The perturbative behavior can be easily determined from saddle-point equations.

[TS]

• A smooth interpolation is given by integral expression.

Enough information for physicists!

#### E.g. ABJM theory:



[Marino, Putrov]

Generalization of our method seems to be difficult... For example,

$$\frac{k_1}{2\pi i}u_i = \sum_{j\neq i}^{N_1} \coth\frac{u_i - u_j}{2} - \frac{n_b}{2} \sum_{a=1}^{N_2} \tanh\frac{u_i - v_a}{2},$$

$$\frac{k_2}{2\pi i}v_a = \sum_{b\neq a}^{N_2} \coth\frac{v_a - v_b}{2} - \frac{n_b}{2} \sum_{i=1}^{N_1} \tanh\frac{v_a - u_i}{2},$$

corresponding to N=3 CS theory coupled to  $n_b$  bi-fund. matters. Even integral expression of the resolvent is difficult to obtain.

Generalization of our method seems to be difficult... For example,

$$\frac{k_1}{2\pi i} u_i = \sum_{j \neq i}^{N_1} \coth \frac{u_i - u_j}{2} - \underbrace{\binom{n_b}{2}}_{a=1}^{N_2} \tanh \frac{u_i - v_a}{2},$$

$$\frac{k_2}{2\pi i} v_a = \sum_{b \neq a}^{N_2} \coth \frac{v_a - v_b}{2} - \underbrace{\binom{n_b}{2}}_{i=1}^{N_1} \tanh \frac{v_a - u_i}{2},$$

corresponding to N=3 CS theory coupled to  $n_b$  bi-fund. matters. Even integral expression of the resolvent is difficult to obtain.

Generalization of our method seems to be difficult... For example,

$$\frac{k_1}{2\pi i} u_i = \sum_{j \neq i}^{N_1} \coth \frac{u_i - u_j}{2} - \underbrace{\binom{n_b}{2}}_{a=1}^{N_2} \tanh \frac{u_i - v_a}{2},$$

$$\frac{k_2}{2\pi i} v_a = \sum_{b \neq a}^{N_2} \coth \frac{v_a - v_b}{2} - \underbrace{\binom{n_b}{2}}_{i=1}^{N_1} \tanh \frac{v_a - u_i}{2},$$

corresponding to N=3 CS theory coupled to  $n_b$  bi-fund. matters. Even integral expression of the resolvent is difficult to obtain.

Note: Similarity to 2-dim. gravity coupled to O(n) model,

$$V'(\phi_i) = \frac{2}{N} \sum_{j \neq i} \frac{1}{\phi_i - \phi_j} - \frac{n}{N} \sum_j \frac{1}{\phi_i + \phi_j}.$$
 [Eynard, Kristjansen]

The case n = 2 is much easier than the other cases.

## **Summary**

- Planar resolvent for a CSM theory is determined in an integral form.
- It is used to determine the large 't Hooft coupling limit which is relevant for AdS/CFT correspondence.
- Massless IIA/massive IIA are discussed in a uniform manner.
- Heavy machinery is not necessary.

#### Open issues:

- Generalization to more general CSM.
- Another large 't Hooft coupling behavior? (for models with long-range eigenvalue interactions?)
- etc.