Testing Gravity: Connecting **Th**eoretical developments to forthcoming **Obs**ervations [Testing Gravity:Th×Obs]

Daisuke Yamauchi Okayama University of Science

2023/11/24 Hokkaido U seminar

Our review paper is now accessible!

PTEP

Prog. Theor. Exp. Phys. **2023** 072E01(105 pages) DOI: 10.1093/ptep/ptad052

Cosmological gravity probes: Connecting recent theoretical developments to forthcoming observations

Shun Arai^{1,*}, Katsuki Aoki², Yuji Chinone^{3,4}, Rampei Kimura⁵, Tsutomu Kobayashi⁶, Hironao Miyatake^{1,4,7}, Daisuke Yamauchi⁸, Shuichiro Yokoyama^{1,4}, Kazuyuki Akitsu⁹, Takashi Hiramatsu⁶, Shin'ichi Hirano¹⁰, Ryotaro Kase¹¹, Taishi Katsuragawa¹², Yosuke Kobayashi¹³, Toshiya Namikawa⁴, Takahiro Nishimichi^{2,4,14}, Teppei Okumura⁴, Maresuke Shiraishi¹⁵, Masato Shirasaki^{16,17}, Tomomi Sunayama^{13,18}, Kazufumi Takahashi², Atsushi Taruya^{2,4}, and Junsei Tokuda^{19,20}

Prog. Theor. Exp. Phys. (2023)7, 072E01 arXiv:2212.09094

1	Introd	duction rise of gravity theo			' Y	.2.1 Summary of the status and schedule of ongoing and future CMB	80
2	2.1	Scalar-tensor	theories	8		3.2.2 CMB Polyspectra and Inflation 4	2
	2	2.1.1 Horndeski theory		8		3.2.3 CMB Lensing 4	4
	2	2.1.2 Degene	rate higher-order scalar-tensor theories	9	3.3	B Large-S	5
	2	2.1.3 $f(R)$ gr	ravity	11		3.3.1 Concrete predictions	
	2.2 I	2 Massive gravity and bigravity 2.2.1 dRGT massive gravity		12		spectro CONCIECE PIEUCIONS	5
	2			12		from theories by	9
	2	2.2.2 Extensi	ons of dRGT massive gravity	14			1
	2	2.2.3 Transla	tion breaking theories	15 16		$\frac{335}{335}$ analytic computations	ŧ
	2	2.2.4 Lorentz 2.2.5 Massive	bigravity theory	16			7
	2.3	Vector-tensor	theories	16		3.3.7 Galaxy clusters	
	2.4	Metric-affine	gravity	$19 \ 4$	Lin	near perturbations in modified gravity 6	1
	2.5 (Cuscuton and	minimally modified gravity	22	4.1	Perturbations in scalar-tensor theories 6	2
	2.6 I	Evading solar	system tests	24	4.2	2 Perturbations in massive gravity theories 6	6
	2	2.6.1 Vainsht	ein screening	24	4.3	B Perturbations in vector-tensor theories 6	8
	2	2.6.2 Chame	eon and symmetron	27	4.4	Perturbations in metric-affine gravity 6	9
	2.7 I	Positivity bou	nd	29	4.5	6 Perturbations in cuscuton and minimally modified gravity 7	0
	2	2.7.1 Non-gra	avitational positivity bound	29 5	Nu	Beltamous and 7	0
	2	2.7.2 Gravita	tional positivity bound	31	5.1	5.1.1 Overview	0
ર	Obser	vables for test	ing gravity	32 33		512 Formalism	2
0	3.1 I	Basic equation	is for testing modified gravity against ACDM model	34		5.1.3 Demonstrations	5
	3.2 (Cosmic Micro	wave Background	38	5.2	Predicting non-linear sta	7
						5.2.1 Overview	7
						5.2.2 Emulation	8
		I H	ow the effect of			5.2.3 DarkEmulator: halo model meets emulation 7	9
		I ''			0	5.2.4 Exten 8	1
		l ara	vity are captured 1	67	Ou	Ullook 🔪 Our hiah-priority 🐰	2
				1	Sul		0
		Iľ	n observations			SUDJECTS	

1. Current status

Golden Age of Observational Cosmology

Array (radio)

Golden Age of Observational Cosmology

Near-future observations will provide <u>vast high-quality data</u> suitable for proving gravity theory on large scales.

We now need to prepare <u>well-motivated</u> <u>theory</u> and <u>appropriate observables</u> that can indicate any signs beyond GR! [Figure from Ezquiaga+Zumalacarregui, Front.Astro.Space.Sci 5(2018)44]

Landscape of Gravity Theory

Example: Scalar-Tensor Theories

♦ (Old) well-known theories: Only <u>one</u> parameter $\mathcal{L} = \frac{1}{2} \left[\phi R - \frac{\omega}{\phi} (\partial \phi)^2 \right]$ [Brans+Dicke,Phys.Rev.124,925(1961),…]
The feasibility can be discussed on a

Example: Scalar-Tensor Theories

◆ Horndeski theory: 4 arbitrary functional DoF $\mathcal{L} = P(\phi, X) - Q(\phi, X) \Box \phi + G_4(\phi, X) R - \frac{\partial G_4}{\partial X} (\nabla_\mu \nabla_\nu \phi)^2 + \cdots$

> [Horndeski,Int.J.Theor.Phys.10,363(1974), Deffayet+,PRD84,063039(2011), Kobayashi+Yamaguchi+Yokoyama,PTP126,511(2011)]

Example: Scalar-Tensor Theories

Today's topic

General Relativity Unique theory

How can we compare

vast theory-space of gravity

forthcoming cosmological observations ?

to

Take-Home Message

Main message: A <u>hierarchical structure</u> exists in the cosmological test of gravity.

It is essential to link each hierarchy appropriately:

The key is <u>to connect</u> <u>Theoretical studies with</u> <u>Observational ones</u>! 2. Hierarchical structure from theory to observation (or vise versa)

(Obs1) **Observable** CMB, LSS, GW, …

Background level: Hubble expansion rate

$$H^{2}(a) = H_{0}^{2} \left[\frac{\Omega_{m,0}}{a^{3}} + \Omega_{DE,0} \exp\left(-3 \int_{1}^{a} \left[1 + \frac{w_{DE}(a')}{a}\right] d\ln a'\right) \right]$$

Dark Energy Equation-of-State

Perturbed level: Growth rate of density fluct.

$$\delta(a, \mathbf{k}) = \exp\left(\int_{0}^{a} \boxed{f(a')} d\ln a'\right) \delta_{*}(\mathbf{k})$$

Linear growth rate

[Planck VI(2018)]

Equation-of-State parameter w_{DE}

[SKA Cosmology Red Book[Bacon+DY+](2018), Bull(2016)]

Cosmic expansion rate

(Obs2) Pheno. parameter : w/o changing ACDM observables

 Measuring *f* from RSD is frequently used for test of gravity responsible for current acceleration.

FastSound [Okumura+] PASJ68,3,38(2016)

[SKA Cosmology Red Book[Bacon+DY+](2018), Bull(2016)]

Linear growth rate f

[Bull(2016), SKA Science Book(RSD)(2015)]

[Bull(2016), SKA Science Book(RSD)(2015)]

Q. Are *w*_{DE} & *f* enough to test gravity?

A. **NOT** enough. Even if $w_{DE}=-1$, $f=f_{GR}$, it is **NOT** necessary that our Universe is described by Λ CDM with GR.

Nonlinear growth can carry new information that is not included in linear-order.

$$\delta(a, \mathbf{k}) = \delta_1(a, \mathbf{k}) + \int \frac{\mathrm{d}^3 \mathbf{p}}{(2\pi)^3} F_2(a, \mathbf{p}, \mathbf{k} - \mathbf{p}) \delta_1(a, \mathbf{p}) \delta_1(a, \mathbf{k} - \mathbf{p}) + \cdots$$
(quasi-)nonlinear growth

[Takushima+(2014,2015),**DY**+(2017),Namikawa+(2018), Hirano+(2018),Hirano+**DY**+(2020),**DY**+Sugiyama(2022), **DY**+(2023),Sugiyama+**DY**+(2023a,b),Yamashita+**DY**+(in prep.)]

(Obs2) Nonlinear growth : to extract higher-order contributions

(specific model with $w_{DE}=-1$, $f=f_{GR}$)

DY+,PRD96,123516(2017) Namikawa+,PRD98,043530(2018)

(Obs3) Pheno. model : modifying gravity at level of EoM

Non-relativistic matter feels

This term depends on gravity model via $\nabla^2 \Phi = 4\pi G a^2 \rho \delta$ **Poisson equation**:

✓ Note: To practically obtain the constraints, <u>a functional form of μ & Σ should be specified</u>.

(Obs3) Pheno. model : modifying gravity at level of EoM

A specific choice of functional forms:

$$\mu(a) = 1 + \mu_0 \frac{\Omega_{\rm DE}(a)}{\Omega_{\rm DE,0}}$$
$$\Sigma(a) = 1 + \Sigma_0 \frac{\Omega_{\rm DE}(a)}{\Omega_{\rm DE,0}}$$

Pheno. model is useful to investigate how signals deviate from standard ones, although the mapping is not fully understood.

(Th2) Effective Theory : modifying at level of perturbed action

- We consider the perturbed action so that the physical meaning of pert. is obvious:
 - [Example] Effective 2nd-order Lagrangian

$$\mathcal{L} = \frac{1}{16\pi G} \left[(1 + \alpha_{\rm T})^{(3)} R + \delta K^i{}_j \delta K^j{}_i - \delta K^2 + \cdots \right]$$

Independently of the details of original theory, this term always represents sound speed of GWs !

(Th2) Effective Theory : modifying at level of perturbed action

- Even complex full theories can be described by linear theories with a few EFT parameters:
 - $\alpha_{\rm K}(t)$ Kineticity (kinetic term of additional field) $\alpha_{\rm M}(t)$ Planck-Mass run rate
 - $\alpha_{T}(t)$ Tensor speed excess

DHOST theory

theory

Honrdeski

Brans-Dicke theory

- $\alpha_{B}(t)$ Braiding (Mixing between field and metric pert.)
 - $\alpha_{\rm H}(t)$ beyond-Horndeski
 - $\beta_1(t)$ beyond-GLPV (higher-order derivatives)

Scalar-Tensor Theories: Bellini+,JCAP07,050(2014), Langlois+,JCAP05,033(2017),... Vector-Tensor Theories: Aoki+,JCAP01,056(2022), Fluid: Aoki+,JCAP08,072(2022)

Other direction: Screening mechanism

- A new DoF mediate additional a long-range gravitational (fifth-)force at all scales.
- We need <u>screening mechanism</u> that suppresses new interactions to evade Solar-system tests.

Other direction: Screening mechanism

- Horndeski theory exhibits successful screening. [Narikawa+DY+,PRD87(2013)124006, Kimura+PRD85(2012)024023]
- Beyond-Horndeski theories such as DHOST lead to a deviation from standard Newton law <u>INSIDE</u> matter. [Langlois+DY+,PRD97(2018)061501, Kobayashi+DY+,PRD91(2015)064013]

A new DoF is responsible for cosmic acceleration.

A new DoF should be <u>screened</u> on small scales. 3. Connecting Theoretical studies with Observations (Th×Obs) General

<u>Vast</u> theory-space of **gravity** (Th1)

Many challenges lie between Theory & Observation…

We need a highway!

(Th2)

(Obs3) Pheno. model

(Obs2) Pheno. parameter

Effective Theory

Forthcoming cosmological observations (Obs1)

(Th2) Effective Theory \rightarrow (Obs3) Pheno. model

We have already created a **dictionary** to connect (Th2) and (Obs3) in <u>specific</u> gravity theories.

D Ex) Interaction between metric and scalar-field pert.

Horndeski theory : Pogosian+,PRD94,104014(2016),Gleyzes+,JCAP02,056(2016) DHOST theory : Hirano+**DY**+,PRD99,104051(2019)/PRD102,103505(2020) Vector-Tensor theory : Aoki+,JCAP01,056(2022),…

(Th2) Eff. Theo./(Th1) Theory \rightarrow (Obs1) Observation[CMB]

T. Hiramatsu (Rikyo U) developed the novel Boltzmann code "CMB2nd" that is utilized for computing CMB in the context of DHOST.

We have started new Japanese Working Group: **"Testing Gravity: Th×Obs"**

Start : Aug. 2020

Aim : Several multi-wavelength wide-field cosmological surveys have been conducted and planned, hence immediate validation system of gravity model needs to be established. For this reason, the aim of this working group is to strongly connect theoretical and observational studies in Japan.

Chairs : Miyatake, Yokoyama, Arai(Nagoya), DY(OUS)
 Members : >50

Our review paper is now accessible!

PTEP

Prog. Theor. Exp. Phys. **2023** 072E01(105 pages) DOI: 10.1093/ptep/ptad052

Cosmological gravity probes: Connecting recent theoretical developments to forthcoming observations

Shun Arai^{1,*}, Katsuki Aoki², Yuji Chinone^{3,4}, Rampei Kimura⁵, Tsutomu Kobayashi⁶, Hironao Miyatake^{1,4,7}, Daisuke Yamauchi⁸, Shuichiro Yokoyama^{1,4}, Kazuyuki Akitsu⁹, Takashi Hiramatsu⁶, Shin'ichi Hirano¹⁰, Ryotaro Kase¹¹, Taishi Katsuragawa¹², Yosuke Kobayashi¹³, Toshiya Namikawa⁴, Takahiro Nishimichi^{2,4,14}, Teppei Okumura⁴, Maresuke Shiraishi¹⁵, Masato Shirasaki^{16,17}, Tomomi Sunayama^{13,18}, Kazufumi Takahashi², Atsushi Taruya^{2,4}, and Junsei Tokuda^{19,20}

Prog. Theor. Exp. Phys. (2023)7, 072E01 arXiv:2212.09094

New Th×Obs project has started!

Sugiyama+**DY**+, MNRAS523, 2, 3133 Sugiyama+**DY**+, MNRAS524, 2, 1651

Requests from Obs side : Novel technique "anisotropic galaxy 3PCF" +

Requests from Theo side : Theoretical prediction of nonlinear growth

New Th×Obs project "Test of gravity from anisotropic galaxy 3PCF"

[Analysis based on **DY**+Sugiyama,PRD105,063515(2022)]

What we have to do are…

Coupling between matter and gravity

- \checkmark Most calculations are based on <u>minimal</u> coupling.
- Nonminimal (e.g. disformal) coupling may lead to strange phenomena in observables [Kimura+DY+(2018),Chibana+DY+(2019)]

Nonlinearity

- Screening mechanism should be considered. Beyond-Horndeski class such as DHOST leads to partial breaking of screening mechanism [Kobayashi+DY+(2015),Langlois+DY+(2018)]
- ✓ Deeper understanding of nonlinear growth of structure is also needed.

Summary

Theoretical

Main message: A <u>hierarchical structure</u> exists in the cosmological test of gravity.

The key is <u>to connect</u> <u>Theoretical studies with</u> <u>Observational ones</u>!

Japanese working group "Testing Gravity: Th×Obs"

Our review paper is now accessible!