Search for α -cluster states in ¹³C using α inelastic scattering

K. Inaba¹, T. Kawabata², Y. Sasamoto³, M. Fujiwara⁴, K. Hatanaka⁴, K. Itoh⁵, M. Itoh⁶, K. Keigo⁷, H. Matsubara⁸, Y. Maeda⁹, K. Nakanishi⁴, K. Suda¹⁰, S. Sakaguchi¹¹, Y. Shimizu¹⁰, A. Tamii⁴, Y. Tameshige¹², M. Uchida¹³, T. Uesaka¹⁰, and H. P. Yoshida⁴

¹Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502, Japan

²Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

³Center for Nuclear Study, University of Tokyo, Wako, Saitama 351-0198, Japan

⁴Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

⁵Department of Physics, Saitama University, Saitama 338-8570, Japan

⁶Cyclotron and Radioisotope Center, Tohoku University, Sendai, Miyagi 980-8578, Japan ⁷National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki 319-1106, Japan

⁸Tokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan

⁹Department of Applied Physics, University of Miyazaki, Miyazaki 889-2192, Japan

¹⁰RIKEN, Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan

 $^{11}\mbox{Department}$ of Physics, Kyushu University, Nishi, Fukuoka 819-0395, Japan

¹²Fukui Prefectural Hospital, Fukui 910-8526, Japan

¹³Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan

The 0_2^+ state in ¹²C, which is called the Hoyle state, is suggested to have spatially well-developed 3α cluster structure. On the other hand, $3\alpha+n$ cluster structure where an excess neutron is coupled with the Hoyle state is expected to emerge in ¹³C. The spin and parity of this state are expected to be $1/2^-$ or $1/2^+$. In this work, we searched for $3\alpha+n$ cluster states by measuring the strengths distributions of the $\Delta L = 0$ and 1 transitions for the $1/2^-$ and $1/2^+$ states in the ¹³C(α, α') reaction at forward angles.

In the analysis, the transition potentials were obtained by folding the macroscopic transition strengths with the effective α -N interaction. We carried out the distorted-wave born-approximation (DWBA) calculation using the transition potentials and obtained the strength distributions for the $\Delta L = 0$ -3 transitions by multipole decomposition analysis (MDA). The MDA reasonably reproduces the known transition strengths for the discrete states in ¹³C. We found the 11.08 and 12.5-MeV states are strongly excited by the monopole transitions and observed a bump structure at $E_x = 14.5$ MeV in the $\Delta L = 1$ strength distribution. Since these states locate near the ⁹Be+ α and 3α +n decay thresholds, it is suggested these states are candidates for developed 3α +n cluster states on the basis of the threshold-rule presented by the Ikeda diagram.

In the present talk, we will report the detail of the analysis and the results.