Beta-decay measurements of very neutron-rich isotopes around mass A=130 within the BRIKEN project at RIBF

V. H. Phong1,2, S. Nishimura2, A. Estrade3, G. Lorusso4,5, F. Montes6, O. Hall7, J. Liu8, K. Matsui2,9, and L.H. Khiem10 on behalf of the BRIKEN collaboration

1VNU University of Science, Hanoi, Vietnam
2RIKEN Nishina Center, Wako, Saitama, Japan
3Central Michigan University, Mount Pleasant, USA
4National Physical Laboratory, Middlesex, United Kingdom
5University of Surrey, Guildford, United Kingdom
6National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, USA
7University of Edinburgh, Edinburgh, UK
8The University of Hong Kong, Hong Kong
9The University of Tokyo, Tokyo, Japan
10Vietnam Academy of Science and Technology, Ha Noi, Viet Nam

Beta-decays of very neutron-rich isotopes around mass A=130 in the region “southeast” of doubly magic nucleus \(^{132}\text{Sn}\), with particular focus on measurement of beta-delayed neutron emission probability (P\(_n\) value), were studied in the Radioactive Isotope Beam Factory [1] at RIKEN by means of beta-neutron-gamma spectroscopy. In this nuclear region, the gross beta decay properties such as beta decay half-life (T\(_{1/2}\)) and beta-delayed neutron emission probability are important inputs for modeling the astrophysical r-process and provide first access to the nuclear structure information. The isotopes were produced by fragmentation of high intensity \(^{238}\text{U}\) beam on Beryllium target, being separated and identified by the BigRIPS fragment separator and terminated by the implantation of ions into the state-of-art AIDA implantation detector [3], which serves as a highly granular beta-counting system. Subsequent delayed neutrons were detected by the BRIKEN neutron detector array [4] consisted of 140 gas-filled \(^{3}\text{He}\) counter, a world largest beta delayed neutron detector ever built, together with two large volume HPGe clover detectors. The experimental setup allows measurement of T\(_{1/2}\) and P\(_n\) values as well as spectroscopic information from measured delayed gamma-rays of nuclei of interest. In this presentation, the experimental details, the analysis procedure and preliminary results will be provided.