Beta-decay measurements of very neutron-rich isotopes around mass A=130 within the BRIKEN project at RIBF

V. H. Phong^{1,2}, S. Nishimura², A. Estrade³, G. Lorusso^{4,5}, F. Montes⁶, O. Hall⁷, J. Liu⁸, K. Matsui^{2,9}, and L.H. Khiem¹⁰ on behalf of the BRIKEN collaboration

¹VNU University of Science, Hanoi, Vietnam

²RIKEN Nishina Center, Wako, Saitama, Japan

³Central Michigan University, Mount Pleasant, USA

⁴National Physical Laboratory, Middlesex, United Kingdom

⁵University of Surrey, Guildford, United Kingdom

⁶National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, USA

⁷University of Edinburgh, Edinburgh, UK

⁸The University of Hong Kong, Hong Kong

⁹The University of Tokyo, Tokyo, Japan

¹⁰Vietnam Academy of Science and Technology, Ha Noi, Viet Nam

Beta-decays of very neutron-rich isotopes around mass A=130 in the region "southeast" of doubly magic nucleus ¹³²Sn, with particular focus on measurement of betadelayed neutron emission probability (Pn value), were studied in the Radioactive Isotope Beam Factory [1] at RIKEN by means of beta-neutron-gamma spectroscopy. In this nuclear region, the gross beta decay properties such as beta decay half-life $(T_{1/2})$ and beta-delayed neutron emission probability are important inputs for modeling the astrophysical r-process and provide first access to the nuclear structure information. The isotopes were produced by fragmentation of high intensity ²³⁸U beam on Beryllium target, being separated and identified by the BigRIPS fragment separator and terminated by the implantation of ions into the stateof-art AIDA implantation detector [3], which serves as a highly granular beta-counting system. Subsequent delayed neutrons were detected by the BRIKEN neutron detector array [4] consisted of 140 gas-filled ³He counter, a world largest beta delayed neutron detector ever built, together with two large volume HPGe clover detectors. The experimental setup allows measurement of T_{1/2} and P_n values as well as spectroscopic information from measured delayed gamma-rays of nuclei of interest. In this presentation, the experimental details, the analysis procedure and preliminary results will be provided.

[1] H. Okuno et al., Prog. Theor. Exp. Phys. 2012, 03C002 (2012).

[2] T. Kubo et al., Prog. Theor. Exp. Phys. 2012, 03C003 (2012).

[3] C. Griffin et al., POS (NIC-XIII) 097 (2014).

[4] A. Tarifeño-Saldivia et al., JINST 12, 04006 (2017).