α inelastic scattering cross sections on ${ }^{12} \mathrm{C}$ with microscopic coupled-channel calculation

Y. Kanada-En'yo ${ }^{1}$ and K. Ogata ${ }^{2,3,4}$
${ }^{1}$ Department of Physics, Kyoto University, Kyoto 606-8502, Japan
${ }^{2}$ Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan
${ }^{3}$ Department of Physics, Osaka City University, Osaka 558-8585, Japan
${ }^{4}$ Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka City University, Osaka 558-8585, Japan

Cluster states near the threshold energy have been investigated from astrophysical interest. The α inelastic scattering can be a good tool to search for new cluster states [1-3]. For ${ }^{12} \mathrm{C}$, not only the 0_{2}^{+}state but also other cluster states have been suggested to give some effect to the reaction rate. The 2_{2}^{+}state has been newly discovered by the (α, α^{\prime}) reaction [3], but its properties have not been clarified yet. In the theoretical description of the (α, α^{\prime}) reaction, a severe overshooting problem of the cross section to the 0_{2}^{+}state, which is called "missing monopole strength", has been discussed for years [4]. Recently, the g-matrix folding model has been applied by Minomo and Ogata using the RGM transition density, and succeeded to reproduce the 0_{2}^{+}cross sections [5].

In this paper, we investigate the α inelastic scattering on ${ }^{12} \mathrm{C}$ with the coupledchannel calculation using the α-nucleus optical potentials, which were microscopically derived by folding the the Melbourne g-matrix $N N$ interaction with the densities of ${ }^{12} \mathrm{C}$. We adopt the matter and transition densities of ${ }^{12} \mathrm{C}$ obtained by a microscopic structure model of the antisymmetrized molecular dynamics (AMD) combined with and without the 3α generator coordinate method (GCM). The calculations reproduce the observe elastic and inelastic cross sections at incident energies of $E_{\alpha}=130 \mathrm{MeV}$, $172.5 \mathrm{MeV}, 240 \mathrm{MeV}$, and 386 MeV . The cross sections to the $0_{2}^{+}, 0_{3}^{+}, 2_{2}^{+}$, and 1_{1}^{-}states are discussed.
[1] T. Kawabata, H. Akimune, H. Fujita, Y. Fujita, M. Fujiwara, K. Hara, K. Hatanaka and M. Itoh et al., Phys. Lett. B 646, 6 (2007).
[2] T. Yamada, Y. Funaki, T. Myo, H. Horiuchi, K. Ikeda, G. Ropke, P. Schuck and A. Tohsaki, Phys. Rev. C 85, 034315 (2012).
[3] M. Itoh et al., Phys. Rev. C 84, 054308 (2011).
[4] D. T. Khoa and D. C. Cuong, Phys. Lett. B 660, 331 (2008).
[5] K. Minomo and K. Ogata, Phys. Rev. C 93, 051601 (2016).

