α inelastic scattering cross sections on ¹²C with microscopic coupled-channel calculation

Y. Kanada-En'yo¹ and K. Ogata^{2,3,4}

¹Department of Physics, Kyoto University, Kyoto 606-8502, Japan
²Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan
³Department of Physics, Osaka City University, Osaka 558-8585, Japan
⁴ Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka City University, Osaka 558-8585, Japan

Cluster states near the threshold energy have been investigated from astrophysical interest. The α inelastic scattering can be a good tool to search for new cluster states [1-3]. For ¹²C, not only the 0^+_2 state but also other cluster states have been suggested to give some effect to the reaction rate. The 2^+_2 state has been newly discovered by the (α, α') reaction [3], but its properties have not been clarified yet. In the theoretical description of the (α, α') reaction, a severe overshooting problem of the cross section to the 0^+_2 state, which is called "missing monopole strength", has been discussed for years [4]. Recently, the *g*-matrix folding model has been applied by Minomo and Ogata using the RGM transition density, and succeeded to reproduce the 0^+_2 cross sections [5].

In this paper, we investigate the α inelastic scattering on ¹²C with the coupledchannel calculation using the α -nucleus optical potentials, which were microscopically derived by folding the the Melbourne *g*-matrix NN interaction with the densities of ¹²C. We adopt the matter and transition densities of ¹²C obtained by a microscopic structure model of the antisymmetrized molecular dynamics (AMD) combined with and without the 3α generator coordinate method (GCM). The calculations reproduce the observe elastic and inelastic cross sections at incident energies of $E_{\alpha} = 130$ MeV, 172.5 MeV, 240 MeV, and 386 MeV. The cross sections to the 0^+_2 , 0^+_3 , 2^+_2 , and 1^-_1 states are discussed.

[1] T. Kawabata, H. Akimune, H. Fujita, Y. Fujita, M. Fujiwara, K. Hara, K. Hatanaka and M. Itoh *et al.*, Phys. Lett. B **646**, 6 (2007).

[2] T. Yamada, Y. Funaki, T. Myo, H. Horiuchi, K. Ikeda, G. Ropke, P. Schuck and A. Tohsaki, Phys. Rev. C 85, 034315 (2012).

- [3] M. Itoh *et al.*, Phys. Rev. C 84, 054308 (2011).
- [4] D. T. Khoa and D. C. Cuong, Phys. Lett. B 660, 331 (2008).
- [5] K. Minomo and K. Ogata, Phys. Rev. C 93, 051601 (2016).