Effects of the Metallicity on Li and B Production in Supernova Neutrino Process

Motohiko Kusakabe¹, Myung-Ki Cheoun², K. S. Kim³, Masa-aki Hashimoto⁴, Masaomi Ono⁵, Ken'ichi Nomoto⁶, Toshio Suzuki⁷, Toshitaka Kajino^{1,8,9}, and Grant J. Mathews¹⁰

¹School of Physics, and IRCBBC, Beihang University, Beijing 100083 China

²Department of Physics and OMEG Institute, Soongsil University, Seoul 156-743, Korea

³School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791, Korea

⁴Kyushu University, Hakozaki, Fukuoka 812-8581, Japan

⁵RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan

⁶Kavli IPMU (WPI), The University of Tokyo, Chiba 277-8583, Japan

⁷Department of Physics, College of Humanities and Science, Nihon University, Tokyo 156-8550, Japan

⁸National Astronomical Observatory of Japan, Tokyo 181-8588, Japan

⁹Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan

¹⁰Center for Astrophysics, Department of Physics, University of Notre Dame, IN 46556, U.S.A.

The neutrino process for the production of ⁷Li and ¹¹B in core-collapse supernovae (SNe) is extensively investigated [1]. Initial abundances of *s*-nuclei and other physical conditions are derived in an updated calculation of the SN 1987A progenitor. The nuclear reaction network including neutrino reactions is constructed with the variable order Bader-Deuflhard integration method. We find that yields of ⁷Li and ¹¹B significantly depend on the stellar metallicity while they are independent of the weak *s*-process during the stellar evolution. When the metallicity is high, there are more neutron absorbers and the neutron abundance is small during the neutrino process. Since ⁷Be is predominantly destroyed via ⁷Be(n, p)⁷Li, a change in the neutron abundance results in different ⁷Be yields. Then, the calculated yield ratio ⁷Li/¹¹B=0.93 for the solar metallicity is larger than that for the SN1987 A ⁷Li/¹¹B=0.80 by 16 % in the inverted mass hierarchy case. We analyze contributions of respective reactions as well as the evolution of abundances, and clarify the neutrino process of ⁷Li and ¹¹B.

In the Galactic chemical evolution of ⁷Li and ¹¹B, the metallicity effect on the neutrino process must be taken into account. Also, yields for ⁷Li and ¹¹B in SNe with near-solar metallicities, not that of SN1987 A progenitor, should be utilized when the calculated ⁷Li/¹¹B ratio is compared with meteoritic data for presolar grains [3].

[1] M. Kusakabe et al., Astrophys. J. 872, 164 (2019).

[2] G. J. Mathews et al., Phys. Rev. D 85, 105023 (2012).