α -clustering in heavy nuclei ¹¹²⁻¹²⁴Sn probed with (*p*,*p* α) reaction

Z. H. Yang^{1,2}, J. Tanaka^{3,4}, S. Typel^{3,4}, T. Aumann^{3,4}, J. Zenihiro¹, S. Adachi¹, S. Bai⁵, P. v. Beek³, D. Beaumel⁶, Y. Fujikawa⁷, J. Han⁵, S. Heil³, S. Huang⁵, A. Inoue¹, Y. Jiang⁵, M. Knösel³, N. Kobayashi¹, Y. Kubota², W. Liu⁵, J. Lou⁵, Y. Maeda⁸, Y. Matsuda⁹, K. Miki¹⁰, S. Nakamura¹, K. Ogata^{1,11}, V. Panin¹, H. Scheit³, F. Schindler³, P. Schrock¹², D. Symochko³, A. Tamii¹, T. Uesaka², V. Wagner³, K. Yoshida¹³

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan
²RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako 351-0198, Japan
³Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
⁴GSI Helmholtz Center for Heavy Ion Research GmbH, 64291 Darmstadt, Germany
⁵State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
⁶Institut de Physique Nucléaire Orsay, 15 Rue, Georges, Clemenceau 91400 Orsay, France
⁷Department of Physics, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan
⁸Faculty of Engineering, University of Miyazaki, 1-1 Gakuen, Miyazaki 889-2192, Japan
⁹Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578, Japan
¹⁰Department of Physics, Osaka University, Osaka 558-8585, Japan

¹²Center for Nuclear Study, The University of Tokyo, 2-1 Hirosawa, Wako 351-0198, Japan

¹³Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

Alpha decay has been known since the very early years of nuclear physics, which is generally described as the quantum tunneling of preformed α particles [1]. Despite the essential role in understanding the α decay process, there is so far no clear experimental evidence reported for the existence of α clusters in heavy nuclei [2]. Recent generalized relativistic density functional (gRDF) calculations suggest that α -clustering occurs at the low-density surface of heavy nuclei, which may explain the origin of α particles in the alpha decay process [3,4]. According to the gRDF calculation, there is also close correlation between surface α -clustering and neutron-skin thickness in heavy nuclei and as a consequence the α -clustering strength in tin isotopes (¹¹²⁻¹²⁴Sn) decreases monotonically with increase of the neutron number [4]. If confirmed, this will further impact our understanding of the density dependence of the symmetry energy in the nuclear equation of state [3,4].

We recently carried out direct measurements on α -clustering strength at the surface of tin isotopes ^{112,116,120,124}Sn by using quasi-free ($p,p\alpha$) reaction at the WS beam line of RCNP, Osaka. The scattered protons and alpha particles were recorded in coincidence by the Grand Raiden and LAS spectrometers. The α -clustering strengths were then deduced from the measured ($p,p\alpha$) cross sections. In this talk, the results of the experiment will be presented.

[1] G. Gamow, Z. Phys. 51(1928) 204.

[2] C. Qi, Prog. Part. Nucl. Phys. 105 (2019) 214.

[3] S. Typel, et al., Rev. C 81 (2010) 015803.

[4] S. Typel, Phys. Rev. C 89 (2014) 064321.