Experimental Study of Nuclear Equation of State using Heavy Ion Collisions at RIKEN-RIBF

M. Kurata-Nishimura¹ M. Kaneko², T. Isobe¹, T. Murakami², G. Jhang³, J.W. Lee⁴, J. Barney³, G. Cerizza³, J. Estee³, B. Hong⁴, J. Łukasik⁵, W.G. Lynch², A.B. McIntosh⁶, P. Pawłowski⁵, K. Pelczar⁷, H. Sakurai¹, M.B. Tsang², S.J. Yennello⁶, and for $S\pi RIT$ Collaboration

Investigation of nuclear Equation of State (EoS) is an attractive subject not only for nuclear physics but also astrophysics. The SAMURAI Pion-Reconstruction and Ion-Tracker-Time-Projection Chamber (S π RIT-TPC) project were carried out to investigate isospin symmetry dependence of nuclear EoS at supra-saturation density using heavy ion collisions at RIKEN-RIBF. For systematic studies, neutron rich and deficient Sn beams, 132,108 Sn, impinging on stable 112,124 Sn isotopes with 300 MeV/u were employed. Produced light particles and fragments such as π^- , π^+ , n, p, t, 3 He, and 4 He were well separated owing to calibrations and a track reconstruction. The recent results of production cross-sections and a corrective flow, which are sensitive to the symmetry energy, will be discussed.

¹RIKEN Nishina Center, RIKEN, Saitama 351-0198, Japan

²Department of Physics, Kyoto University, Kyoto 606-8502, Japan

³NSCL and Dept. of Phys. & Ast., Michigan State University, USA

⁴Department of Physics, Korea University, Korea

⁵IFJ PAN, Kraków, Poland

⁶Cyclotron Institute, Texas A&M University, USA

⁷Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland