Mass measurement of neutron-rich ¹²²Rh, ^{123,124}Pd and ¹²⁵Ag nuclides with Rare RI Ring at RIBF in RIKEN

H.F. Li^{1,2,3,4}, S. Naimi¹, D. Nagae¹, Y. Abe¹, Y. Yamaguchi¹, F. Suzaki¹, S. Omika⁵,
K. Inomata⁵, H. Arakawa⁵, S. Hosoi⁵, Y. Inada⁵, W.B. Dou⁵, D. Kajiki⁵,
K. Nishimuro⁵, T. Kobayashi⁵, T. Yamaguchi⁵, D. Hamakawa⁵, M. Mukai⁶,
T. Moriguchi⁶, R. Kagesawa⁶, D. Kamioka⁶, A. Ozawa⁶, S. Suzuki², Z. Ge², C.Y. Fu²,
Q. Wang², M. Wang², S. Ota⁷, S. Michimasa⁷, N. Kitamura⁷, S. Masuoka⁷, D.S. Ahn¹,
H. Suzuki¹, N. Fukuda¹, H. Takeda¹, Y. Shimizu¹, Y.A. Litvinov⁸, G. Lorusso⁹, P. Walker⁹, Z. Podolyk⁹, M. Wakasugi¹and T. Uesaka¹

¹Nishina center, RIKEN, Saitama 351-0198, Japan

²Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China
³University of Chinese Academy of Sciences, Beijing 100049, China
⁴School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
⁵Department of Physics, Saitama University, Saitama 338-8570, Japan,
⁶Institute of Physics, University of Tsukuba, Ibaraki 305-8577, Japan
⁷Center for Nuclear Study, University of Tokyo, RIKEN Campus, Saitama 351-0198, Japan
⁸GSI Helmholtzzentrum f
ür Schwerionenforschung, 64291 Darmstadt, Germany
⁹University of Surrey, Guildford, GU2 7XH, United Kingdom

Recent sensitivity studies for the r-process have indicated that the masses of the neutron-rich Pd, Ag, Cd, In, Sn and Sb nuclei have a significant influence on the final elemental abundance pattern for the A=130 r-process abundance peak [1]. Predicted deformation before the N=82 shell closure may also play a role in the r-process abundance of elements with A<130 [2]. Masses of 15 nuclides relevant for the second r-process peak at A=130 will be measured for the first time at the rare-RI ring (R3) at Radioactive Ion Beam Factory (RIBF) in RIKEN. The R3, a cyclotron-like storage ring mass spectrometer, was recently commissioned and is specifically dedicated for exotic nuclei far from stability. A mass resolution of about 10^{-6} is expected to be achieved [3].

In autumn 2018, direct mass measurements with R3 were carried out for the fission fragments of ²³⁸U at RIBF. Nuclei of interest were produced by the in-flight fission of ²³⁸U beam at 345 MeV/u impinged on a Be target. The fragments were separated with BigRIPS, transported through the OEDO and SHARAQ beamline, injected and stored in the R3 using the self-triggered individual injection method. The masses of ¹²²Rh, ^{123,124}Pd and ¹²⁵Ag were measured. The details of the data analysis and the preliminary results will be reported in this contribution.

[1] M. Mumpower, et al., Journal of Physics G: Nuclear and Particle Physics, 42(3), 2015 [2] K.L. Kratz, et al., The Astrophysical Journal 792, no. 1, 2014

[3] A. Ozawa, et al., Progress of Theoretical and Experimental Physics 2012, no. 1, 2012