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Lecture Plan

* Lecture 1 (now!)
— (a) General Relativity & Gravitational Wave Refresher
— (b) Overview of GW sources & phenomenology.

— (c) Numerical relativity and general-relativistic
(magneto-)hydrodynamics.

e Lecture 2 (Thursday)
— (a) Continuation of Lecture 1, Part (c).
— (b) Microphysics of neutron star mergers and stellar collapse.
— (c) Neutron star mergers and Nucleosynthesis

e Lecture 3 (Friday)
— (a) Massive star evolution, stellar collapse.
— (b) Core-collapse supernovae and long gamma-ray bursts.
— (c) Neutron star and black hole formation.
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CSU Fullerton; SXS Collaboration
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Numerical Relativity

MISNER summarized the discussion of this session: "First we assume that you
have a computing machine better than anything we have now, and many programmers and
a lot of money, and you want to look at a nice pretty solution of the Einstein
equations. The computer wants to know from you what are the values of g v and

9
—3%3 at some initial surface, say at t = O, Now, if you don't watch out when you

specify these initial conditions, then either the programmer will shoot himself or
the machine will blow up. In order to avoid this calamity you must make sure that
the initial conditions which you prescribe are in accord with certain differential
equations in their dependence on x, y, z at the initial time. These are what are
called the "constraints.®™ They are the equations analogous to but much more com-

Proceedings of the GR1 Conference on the role of gravitation in physics
University of North Carolina, Chapel Hill [January 18-23, 1957]
(via Pablo Laguna & Deirdre Shoemaker)

Recommended texts:
Baumgarte & Shapiro, Numerical Relativity
Alcubierre, Introduction to 3+1 Numerical Relativity
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Basic Idea of Numerical Relativity

<«— 3-hypersurface

Foliation of spacetime

5

\_ Bdt
w—__ )

Sl V< e 12 first-order hyperbolic evolution equations.

ADM
3+1 split of spacetime

Figure: C. Reisswig
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G = A T * 4 elliptic constraint equations

* 4 coordinate gauge degrees of freedom: a, B'.
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3+1 Split

3+1 split — key objects:

Spv = g_ metr@c v = det(7yik)
’)/l']' = — INetric o

a = lapse function V —8 = &Y
B! = shift vector

2 ‘ _ ' D — Ay
goo = —a“ + B;8°  goi = Vij B Gij = Vij
Extrinsic curvature: = time derivative of 3-metric

Orvij = —2aK;j + Bji + Pisj

4-velocity: u” ; utu, = —1; v =(—1,0,0,0) in rest frame

3-velocity: Eulerian observer moving along time-like normal n*.

(at restin a shce)W e Note: 3-velocity
often defined

:(1
vt = — o+ — W B P W
%% Q wW=— =W/ v —-= U=
Q o) U
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ADM Equations

(Historic: Arnowitt-Deser-Misner 1962; York 79)

815%‘3‘ _QOJKij =+ Bj;i =+ ﬁi,j Evolution System
8th~j = — Oé;z'j + « {RZ]KKZJ — 2szKTr;

1
= 87(Sij — 57i55) — ATpADMYig

6szg .m T szﬁm] + ijﬁm '

Sij = %M’YJVT/W S, K — traces of S;;, K;;
Constraint Equations:

Hamiltonian R+ K2 K,LJKZJ — 167T,0ADM =0
Momentum KZJ,J ’)/Z]K — 87’(’52 =0
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Ca UC hy EVQl uti O Initial boundary

value problem.

Evolve

forward
in time &
monitor
constraints.

Specify /

constraint-satisfying
initial data & boundary values.

C.D. Ott @ YITP GW School, March 2015 8



Practical Numerical Relativity

Have not yet specified gauge conditions: Anything goes?

Ml © GR dynamics will twist, squeeze, stretch
) coordinates.

& * GR can develop coordinate singularities
8 and physical singularities.

=« For numerically stable evolution, must

avoid singularities and control
coordinate distortion.

* Spherical symmetry (1D):
-> no radiative degrees of freedom, fully constrained evolution.
-> ADM with simple gauge choices: no problem.

 ADM form of the Einstein equations is unstable in 2D/3D!

-> well-posedness issues.
-> small errors in constraints get amplified exponentially over time!
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Well-Posedness (1)
Hadamard 1902:

A problem is well-posed if and only if: * a solution exists;
Example (1): Hadamard 1923 * the solution is unique;
* the solution depends
Ofu—02u=0 x€l0,1] P

continuously on the initial
Sln(27Tn$) and boundary data.

2mn)f p>1

ID: u,t:() = ( 6’tu\t:0 —

BC: u(x =0)=wu(r=1) =0
sin(27nt) sin(27nx)
(2mn)F+1

For n—>00 ID—0 wu(z,t)—0 well-posed
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Well-Posedness (2)

Example (2):/ only change

Ofu+0*u=0 =z ¢€]0,1]
sin(27nx)
ID: ”Uj‘tzo =0 (9tu]t:0 — (27Tn)P P>1
recall:
BC: u(lx=0)=u(z=1)=0 1

sinh x = 5 (ex — e_w)

sinh(27nt) sin(2mnx)

Solution: u(x,t) =

ID =0
BUT u(x,t) — o0

For n — o

ill posed

(27n)F+1

Given above egn. + any ID and BC,

one can introduce a small perturbation
that leads to arbitrarily large solution
at finite time.
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* ADM is ill posed and boundary conditions unclear. (Kidder+01, Nagy+04)
(-> ADM is called “weakly hyperbolic” in PDE theory).

* Want evolution system that is symmetric/strongly hyperbolic
(well posed + clear boundary conditions)

BSSN Formulation
Nakamura+87, Shibata & Nakamura 95, Baumgarte & Shapiro 99

* Conformal-traceless reformulation of ADM.

* Additional evolution equations, conditionally strongly hyperbolic.
* Sensitive to gauge choice.

* Most widely used evolution system today.

Generalized Harmonic Formulation
Friedrich 1985, Pretorius 2005, Lindblom+ 2006

* Choice of coordinates that reduces Einstein equations to
a set of inhomogeneous wave equations. Symmetric hyperbolic.
* Used primarily by Caltech/Cornell SXS code SpEC.



Baumgarte-Shapiro-Shibata-Nakamura (BSSN)

Nakamura+87, Shibata & Nakamura 95, Baumgarte & Shapiro 99

PHYSICAL REVIEW D VOLUME 52, NUMBER 10 15 NOVEMBER 1995

Evolution of three-dimensional gravitational waves: Harmonic slicing case

Masaru Shibata
Department of Earth and Space Science, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan

Takashi Nakamura
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01, Japan
(Received 7 April 1995)

We perform numerical simulations of a three-dimensional (3D) time evolution of pure gravi-
tational waves. We use a conformally flat and K = 0 initial condition for the evolution of the
spacetime. We adopt several slicing conditions to check whether a long time integration is possible
in those conditions. For the case in which the amplitude of the gravitational waves is low, a long
time integration is possible by using the harmonic slice and the maximal slice, while in the geodesic
slice (a = 1) it is not possible. As in the axisymmetric case and also in the 3D case, gravitational
waves with a sufficiently high amplitude collapse by their self-gravity and their final fates seem
to be as black holes. In this case, the singularity avoidance property of the harmonic slice seems
weak, so that it may be inappropriate for the formation problems of the black hole. By means of
the gauge-invariant wave extraction technique we compute the waveform of the gravitational waves
at an outer region. We find that the nonlinearity of Einstein gravity induces the higher multipole
modes even if only a quadrupole mode exists initially.

C.D. Ott @ YITP GW School, March 2015 13



Baumgarte-Shapiro-Shibata-Nakamura (BSSN)

Nakamura+87, Shibata & Nakamura 95, Baumgarte & Shapiro 99

Heuristic approach: rewrite ADM equations to find more stable
evolutions, e.g., keep some terms that drop out in regular ADM.

Conformal-tracefree decomposition:

(1) ”%j — 6_4¢’Yf1:j with requirement det ’%j =~=1
1
—s 0= — |
¢ Tl

~ 1 ~ . ~
(2) Define Kij — 64¢ (Az] + §&Z3K> AZ,L- —A=0

Now evolve 7,5, A;i, ¢, K instead of 7ij K
-> additional evolution equations

C.D. Ott @ YITP GW School, March 2015 14



Baumgarte-Shapiro-Shibata-Nakamura (BSSN)

Nakamura+87, Shibata & Nakamura 95, Baumgarte & Shapiro 99

1 1 . :
0y = —EOZK + _5277; + 8¢,

o~ o~ 1 .
0K = -7V, Via+« [AZJA” — 3K2 + 47 (paDM + S)] + 8K ;
\ covariant deriv. wrt. conformal 3-metric 5
at’)/zg 2CVA’LJ + ﬁk Yij, k + /%kﬁk,j =+ ’?kjﬁk,qj T gﬁijﬁk,k
~ 4 -~ TF
(9tA7;j =3 ¢ {—(Vivj'()é) + &(Rij — 87'('37;]')} \
tracefree
-+ Oz(KAf,;j — 2AilAlj)

5kA’L] k+ Azkﬁ Han Ak]ﬁk Az’jﬁk,k
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Baumgarte-Shapiro-Shibata-Nakamura (BSSN)

Nakamura+87, Shibata & Nakamura 95, Baumgarte & Shapiro 99

Not done yet: o r-
Rij — Rz’j + Rij

RZ; = —Q@i@jqb — Z’Wij@l@lQb + 4@z¢@j¢ — 4&ij@l§b@l¢

Define: f”’ — f’y?kf‘;k — _ﬁ/ijj “conformal connection functions”
- ’ 1
(requires 7y = 1) Uijk = 2 (Uijk + Ujik)

~ 1, - - ey - -
Ri; = —§Vlm%'j,zfm + 366" )+ T + 3" 2016 o + Din Thi)

™~

Only term containing explicit second derivatives of the
metric. Essentially Laplacian; principal part in @tAij

Now: advantageous for stability to promote ['* to evolved variables.
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Baumgarte-Shapiro-Shibata-Nakamura (BSSN)

Nakamura+87, Shibata & Nakamura 95, Baumgarte & Shapiro 99

Why is this a good idea? Consider wave equation:

U,tt — U,ac:c = AU
OR: (’9tU =11
O,I1 = A

With fias independent variables, the BSSN equations become
OrYij o< Ajyj
atAij X A’%]

-> more similar to symmetric hyperbolic wave equation!
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Baumgarte-Shapiro-Shibata-Nakamura (BSSN)

Nakamura+87, Shibata & Nakamura 95, Baumgarte & Shapiro 99
So 3 more evolution equations:
~ . o o~ o~ 2 . . o
L ~ ~
oI = —24Yq ; + 2a ( A — SR — 8178 + 6A”¢,j>

T 7 Q1 2‘~i ) WaY)
+ 8T, T+ Fﬁj + vlﬁjﬂ B

(note that here a term involving ajA” was eliminated with the help of
the momentum constraint.)

One can show that BSSN is strongly hyperbolic for fixed ¢, ﬂi.
(Sarbach+02, Nagy+04)

For non-static gauge, BSSN is strongly hyperbolic as long as
shift stays “small” (not close to 1). (Gundlach & Martin-Garcia 06).

Price paid for stability: 5 additional evolution equations!

C.D. Ott @ YITP GW School, March 2015 18



BSSN: Gauge Choices (1)

What about lapse function and shift vector?

Turns out: for BSSN, choice of gauge influences hyperbolicity of the evolution
system -> after BSSN, took another 5-10 years to find good gauge.

Geodesic Slicing: «a = 1, ﬁz = ( (SN95: bad idea! Coord. singularities!)

Horizon
Can do better! Consider what learned in

1970s-90s about gauges for ADM.

Singularity

t=150

A “good” gauge condition for BSSN should be:

t=100

* manifestly hyperbolic (in PDE nature);
* singularity avoiding (o« — 0 near singularity);

* minimizing distortion/stretching of spatial — < .
coordinates.

T

t=0

(see, e.g., Alcubierre+03, Baumgarte & Shapiro book)

/  Collapsing Star \\
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BSSN Gauge Choices (2)

(see, e.g., Alcubierre+03, Baumgarte & Shapiro book)

Maximal slicing: K = (
’yijviv]'()é = (KZ]KZJ —+ 47T(,0ADM -+ S))

Condition on lapse, shift still free.
Leads to collapse of lapse inside BH horizon, but elliptic & late-time
blow-up of 7rr (grid stretching).

o ” 1,1 2
1+log” slicing: 9,y = _ 0’ K —+ ﬁkoz,k
8

(hyperbolic “driver” slicing condition; drives lapse towards 0 near singularity,
not must give initial data for lapse -> e.g., via maximal slicing.)

Aside: “1+log” because: 57’ =0 Oia=—-2aK
— a=1+1Invy (via ADM)
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BSSN Gauge Choices (3)

(see, e.g., Alcubierre+03, Baumgarte & Shapiro book)

Shift conditions:

Look for hyperbolic variants of the elliptic “minimal distortion” shift.
(Smarr & York 78) 1

VZE” =0 Zij = 5 1/38{5/@'

(“distortion tensor”)
BSSN: minimal distortion -> “Gamma-freezing”: 0,1"* = (
(but still elliptic)

Family of hyperbolic “Gamma-driver” shift conditions:

T __ . Simple, first-order parameter-free variant
atﬁ — gB’L (Shibata 2003):

0:B; = x9,I'" —nB' — Cﬁjfj,j 0;8" =T" + At - 9,T"

3 1
15 X5 ters,eg, E=—-,x=1,n=—,0=0
E,1,%,C parameters, e.g., & 1 X n N ¢

C.D. Ott @ YITP GW School, March 2015 21



* |nitial data: finding solutions to the constraint equations.
* Boundary conditions.
e Gravitational wave extraction.

* (Apparent & Event) Horizon finding, spacetime diagnostics
(measuring angular & linear momentum, mass-energy etc.).

* Singularity excision.

* Numerical methods for solving the Einstein equations:
finite differences, pseudo-spectral, discontinuous Galerkin

Recommended texts:
Baumgarte & Shapiro, Numerical Relativity
Alcubierre, Introduction to 3+1 Numerical Relativity



* Initial data
 Evolution system, gauge / gauge evolution, boundary conditions

* Discretization scheme for space and time —
typically fourth order, central

* Common approach: Method of Lines
Treat problem semi-discrete; discretize in space, then treat as ODE,
integrate in time via Runge-Kutta (or similar)

d
° L(¢) = RH
o (q) = RHS

* Analysis code (constraints, horizon finding etc.)



Schematic Numerical Relativity Simulation

spacetime
Initial Data curvature
(satisfy constraints) gauge
hydrodynamics /
radiation
Evolve one
Timestep

Evaluate RHS High-Order

= Runge-Kutta

Apply Update Integrator

X X LX) A

(first order) /

At < Az/c

Complication: Adaptive Mesh Refinement
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Relativistic Fluid Dynamics (and MHD)

C.D. Ott @ YITP GW School, March 2015
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Reminder: Newtonian Fluid Dynamics

e Continuum assumption. System of size [,

Can define macroscopic fluid element with size [ << L
with averaged state variables p, v, €, T, P, ...
Mean free path of fluid particles \ <& [, from which follows Tequil << Tdyn

e Conservation laws for mass, momentum, and energy

Mass conservation

d d
!oarticles # density .
inV flux of particles ] — 'V
d
dS = ndA v o
change of N # of particles passing

through surface
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Reminder: Newtonian Fluid Dynamics

7)),
— | ndV + jd> =10
at Jyv oV

Divergence Theorem

dd = ndA
/ vV Ay = [ Ads
A%
/—ndV+/V-jdV:O
9, . B 0p
ﬁn%—V-J—O p=mn E%—V(pv)—()

continuity equation
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Reminder: Newtonian Fluid Dynamics

- . 9
Continuity Equation op c -
(mass conservation) ot + V(pv)
Euler Equation d(pv)

+ V(pvv + P) = pg

(momentum cons.) Ot

Energy Equation
(energy cons.)

0
aé’ + V(€4 P)v) = pvg

£ — pe + lprZ Equation of State (EOS)

2 P =P(pe X;)

introduce
a 3-stress tensor

T=pvev+Pl >a(§;’)+v-1:o
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GR Hydrodynamics

(neglecting magnetic fields for now)

Recall Einstein equation:

1
RMV — §Rgluy — 87TTIUJV

7N

curvature source of curvature

(due to Bianchi identity)

1 .
G,LW — R,LW o §R9,LW V'UG,W/ — G,uy H =

e

VHT,, =0 s equations of motion
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GR Hydrodynamics

(neglecting magnetic fields for now)

j’u — IOU'u mass flux

T“V:phu“uV+Pg“V h=14€e+P/p
Stress Energy Tensor of an ideal fluid relativistic specific enthalpy
(inviscid, no magnetic field)

Conservation of mass, momentum, and energy:

/A -
5= (pu );,u — () Mass conservation

uv [T [75% o Energy-momentum
I o (phu u” + Pg )5“ =0 conservation

C.D. Ott @ YITP GW School, March 2015
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GR Hydrodynamics = det(ya)

Flux-conservative Formulation: V=8 =&/
e.g., Banyuls+97, Font 08 8U OF ¢ . ‘
— S — (1 — o° p —1/2
ot 8332 v ( v'vi)
U = [D, Sj, 7] D = VYW, conserved mass
gt — \/f_yphWZUi, conserved momenta
T = ﬁ (phW2 — P) — [ conserved energy
F' = a|Di', 85" +6/P,75" + Pv'| fluxes
7' ="' — B/«
S — a[O T (691,] X gA)
’ Ox Sl curvature source
Oln o “gravitational
o) (T“O — T“VFOV> ] acceleration”
Ox M H

+ any interaction
+ Equation of state (E0S): P — P(IO7 €, Xz) terms etc.
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GR Hydrodynamics
Primitive and Conserved Variables

p, 1€, Y., v’ primitive Why worry about primitive vars at all?
-> EOS is a function of the prim. vars!

D,7,DY,.,S; conserved

Consequence:

Must compute primitive variables from evolved
conserved variables after each step!

There is no closed expression
-> must use Newton iteration to solve for primitive variables.

(This makes GR Hydro (and SR hydro) more expensive than
Newtonian hydro)
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Numerical Approach: Finite Volume

u, R “Godunov method”
/ \
\_\P\—I /I ;\ /'
\:\\ ./ \ /
1 \\ ); \\ o ,/
o‘\\—// \\’,/
I N I RIS
| I |
X. I-= X | i+ X .
1—1 1 i+1

* Represent data as cell averages at cell centers.
* Reconstruct data to cell interfaces.

Compute physical fluxes by solution of local Riemann
shock problems.

Update cell center values by difference of left and right fluxes.

More details on formulations and numerics:
Font 2008, Liv. Rev. Rel. 2008-7
Rezzolla & Zanotti, Relativistic Hydrodynamics
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GR Hydrodynamics Flowchart

Repeated
for each
integration
substep.

Source Terms = Curvature

Reconstruct Primitives
Prim2Con
Riemann

Add to RHS
Update
Boundaries

Con2Prim

[——

x 3 (once for

o each of x,y,z)

(Hydro + Curvature)

Update TH —_— Curvature

C.D. Ott @ YITP GW School, March 2015
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Magnetohydrodynamics (IVIHD)

Kiuchi+14

* Magnetic (B) fields are everywhere in t=38. 8ms
astrophysics.

* Non-uniform fluid motion will
always amplify field.

» B-field likely dynamically relevant in
NSNS & BHNS, and core-collapse
supernovae.

Newtonian MHD: (no netcharge, E~v/cBinlab frame, E =0 in rest frame,
no displacement currents, fu/c < 1)

9B Induction Equation Constraint
E—%Vx(va):—Vx(anB) V-B=0
Lorentz Force \ resistivity; O in ideal MHD

| | ;
fi, = 47T(VXB)XB_E(B V)B_S_WV(B)
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(Ideal) General-Relativistic MHD

Font 08, Shibata & Font 05, Kiuchi+12, Etienne+12, Palenzuela+12, Moesta+14, ...

Faraday Tensor 1

PR =l BY —u'BY — e NusBy PR = Sy

MHD approx: E-field in fluid rest frame vanishes: -> F'*"qy, = ()
[13%
TH =Thyia + Tem

TV = phutu” + Pg'v h=1+¢e+ P/p

1

1
T, = FVFY — g™ Yy = Buiu? +

—g’“’bQ _ pHpY
2
b = u, " FHY magnetic field in fluid rest frame

unit normal
Eulerian observer B-field: B* = nM*FW —a'F* n on slice

Equations of motion: V5 =0 V,T" =0 V/"F* =0
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(Ideal) General-Relativistic MHD

Font 08, Shibata & Font 05, Kiuchi+12, Etienne+12, Palenzuela+12, Moesta+14, ...

Conserved variables:
- h=14¢e+ (P+b%)/p
S; = VY(ph*W?v; — ab’b;)
7=/ (ph*W? — P* — (ab”)?) — D

B* = /7 B* |
Evolution equations: ou | oF - =S U = [ba Sjv T, Bk]
ot Ox*
- Dt T

S;v' + yP*6t — b; B /W
T@i T ﬁP*fUZ R OébOBZ/W S(n(io?rscefff))rrB)GRHD
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(Ideal) General-Relativistic MHD

Font 08, Shibata & Font 05, Kiuchi+12, Etienne+12, Palenzuela+12, Moesta+14, ...

Constraint: 1
V.-B= —
VY

* Enforcing constraint numerically -> highly non-trivial.

* Various numerical approaches:
* Constrained transport (CT; Toth 00),
e flux-CT (Kuroda&Umeda 10; Kiuchi+12),
 divergence cleaning (Liebling+10),

* vector-potential evolution (e.g., Etienne+12,15).

B=VxA—V-B=0
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The Einstein Toolkit Project

http://einsteintoolkit.org

Mosta+14
Loffler+12

C. D. Ott @ YITP GW School, March 2015
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The Einstein Toolkit

http://einsteintoolkit.org

* Collection of open-source software components for the
simulation and analysis of general-relativistic
astrophysical systems.

C.D. Ott @ YITP GW School, March 2015
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The Einstein Toolkit

http://einsteintoolkit.org

* Collection of open-source software components for the
simulation and analysis of general-relativistic 5

hvsical Mosta+14

astrophysical systems. L5ffler+12

* Supported by NSF via collaborative grant to
Georgia Tech, LSU, RIT, and Caltech. @

* ~110 users, 53 groups; ~10 active maintainers.

e Goals: - Reproducibility.

— Build a community codebase for numerical relativity and
computational relativistic astrophysics.

— Enable new science by lowering technological hurdles for
researchers with new ideas. Enable code verification/validation,
physics benchmarking, regression testing.

— Make it easy for users to take advantage of new technologies.

— Provide cyberinfrastructure tools for code and data management.
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The Einstein Toolkit

* Regular releases of stable code versions.
Most recent: “Herschel” release, November 2014

 Support via mailing list and weekly open conference calls. )
Mosta+14

* Working examples for BH mergers, NS mergers, isolated  Loéffler+12
NSs, rotating, magnetized core collapse.

Available Components: @

 Cactus (framework), Carpet (adaptive mesh refinement)
* GRHydro — GRMHD solver

* McLachlan — BSSN/Z4c spacetime solver
(code auto-generated based on Mathematica script, GPU-enabled)

* Initial data solvers / importers
* Analysis tools (wave extraction, horizon finders, etc.)
e Visualization via Vislt (http://visit.lInl.gov)
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