Workshop “Recent developments and challenges in topological phases” @ YITP

Universality and phase transitions
in system-environment entanglement

Yuto Ashida (University of Tokyo)

Refs:

YA, Furukawa, Oshikawa, arXiv:2311.16343
Yokomizo & YA, arXiv:2405.19768.
Masuki, Sudo, Oshikawa, YA, PRL 129, 087001 (2022)
Yokota, Masuki, YA PRA 107, 043709 (2023)

Fuji & YA, PRB 102, 054302 (2020)



Overview: Quantum entanglement in many-body systems

Entanglement between A and B is quantified by a nonlinear function of p4 = trg[|[Y){¥]].
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Introduction: entanglement transition induced by measurement

continuous measurement

& oo oe 2o JlD

quantum trajectory | ~ : |
of a many-body state : H g

[Preai(t)) F
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cf. Daley, Adv. Phys. 63, 77 (2014);
YA, Gong, Ueda, Adv. Phys. 3, 69 (2020)

O

After transient dynamics, the system is expected to reach a pure *steady* state [;,;).



lllustrative example: nonintegrable hard-core bosons under weak measurement

Nonintegrable hard-core bosons under local density measurement L; « n;.

Quantum jump = Wavefunction localization due to atom detection
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* *Weak* measurement: detection rate is low such that the system thermalizes after each jump

* In the long-time limit, the state reaches to an infinite-temperature state — Volume-law entanglement in [t;,)

What would happen when the measurement strength is increased ?

YA, Saito and Ueda, PRL 121, 170402 (2018)



Measurement-induced transition and criticality

Entanglement entropy of |ty,;)
averaged over trajectories
Sap = E[—tr[psInpy]]
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Y. Fuji and YA, PRB 102, 054302 (2020)

Averaged mutual information

A

Iap =54+ 5 —Saun

Iap >

0.06 ———
0.05}
0.04}

la .03}
0.02}
0.01}
0.00°

(040B).|?
~ 2/|04]]2]|OB]|?

vvvvvvvvvvvvvvvv

system size
L =8~20

meas. strength

Measurement-induced criticality:
peak structure at critical point
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Postselection problem

Common difficulty:
the necessity of postselections to probe a measurement-induced transition
— success probability becomes exponentially small as the system size is increased.

Quantum trajectory = a pure state conditioned on measurement outcomes

: Heff

Entanglement transitions in unconditioned evolution?
(= measurement outcomes are averaged over, and no postselection is required)



System-environment entanglement in open many-body systems

Unconditioned evolution & CPTP map £ & Stinespring representation

pe = E(ps) = trp[U(ps @ pr)U"]

pure

— pg¢ is a reduced density matrix on S obtained from a pure stateon S + E.

Entanglement between S and E is quantified by Renyi entropy of pg¢:

1
Sg = 7 Intrs [p}]

For concreteness, we focus on the case of n = 2 (purity):
Tomonaga-Luttinger liquid (TLL)
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Universality and transition in system-environment entanglement

Scaling of system-environment entanglement S : L
<€ >
S System
Sse = s1L —so +0(1) Q-~--Q----Q----Q--~-Q=-~-Q
AR @ @ < <&
| N | Higmes & & oS
S1 : nonuniversal coefficient (depending on UV cutoff) @ & & > > <
E Envirornment

S0 : universal term (characterized by K)

so # 0 & CPTP map € is relevant to low-energy properties.

Phase diagram

(local density measurement)
v' Entanglement transition induced by environment

= Singular change of sy as a function of §D ; V2K Env-induced
the coupling strength u 5 L So = AVeAR -tFansition
3 So = |
= :
‘&0 In 2K ! . 0
*This transition requires no postselection, g- i So =
but can be detected only by a nonlinear function of pg. 8 i
O I
— Makes contrast to conventional dissipative transition, 1/2 K

which is probed by a linear function of pg¢. TLL parameter

see also: Stephan, Furukawa, Misguich, Pasquier, PRB 80, 184421 (2009); Zou, Sang, Hsieh, PRL 130, 250403 (2023)



Overview of theoretical framework and derivation

Unconditioned density matrix ps = E(ps)

* Doubled Hilbert space formalism:

represent pg as a vector + cf. talks by Masaya Nakagawa
and Shenghan Jiang yesterday

* Path-integral representation
\ 4 *also used in SPT phases of mixed states:
cf. Ma and Turzillo, arXiv:2403.13280 ...

Effective field theory in a doubled Hilbert space,
where CPTP map £ is represented as a boundary interaction

* (Nonperturbative) RG analysis:
identify boundary conditions in the IR limit.

* Boundary CFT :
construct conformal boundary states
consistent with the b.c.’s.

\4

Goal: determine a value of the universal term s in sys-env entanglement Sqg

see also: Lee, Jian, Xu, PRX Quantum 4, 030317 (2023), Bao, Fan, Vishwanath, Altman, arXiv:2301.05687 (2023), ...



Effective field theory in a doubled Hilbert space

CPTP map £ & Kraus representation

ﬁg = H E Km7ij5an ] Ky, j acts locally on lattice site j
1 m
Doubled Hilbert space formalism:

density matrix (unnormalized) pure state

A

pe  —> Ipe>=H(ZKmJ®K*,J)|ps—exp( Yk @k )lps)
J

J

Path-integral representation: (1+1)D two-component scalar fields (¢, cﬁ) Se
VA
Ssi = —logtr [|pe) (pel] = — log
z
~ Q£ 7 ~ ~ ~
Je = /quque Siot®:9] SE (¢, ] = So[] + So[¢] + Selo, P

So : bulk CFT of initial critical state |¥,)

Se :boundary interaction induced by CPTP map &

Z_ 0 Z 7  partition function without boundary interaction

see also: Lee, Jian, Xu, PRX Quantum 4, 030317 (2023); Bao, Fan, Vishwanath, Altman, arXiv:2301.05687 (2023)



Effective field theory in a doubled Hilbert space

Path-integral representation of Sgg:

)
)

Each partition function can be evaluated by boundary CFT:

log Zé: = bgL +logg,;: —|—O(1), f < {I,g}

g function (“ground-state degeneracy”)

Ssg = —log

Affleck and Ludwig, PRL 67, 161 (1991)

Ssg =s1L —sg+o0(l) - e°° = e
9z

Universality of Sgr < Universality of g function

see also: Stephan, Furukawa, Misguich, Pasquier, PRB 80, 184421 (2009); Zou, Sang, Hsieh, PRL 130, 250403 (2023)



Application to Tomonaga-Luttinger liquid under local measurement

: : g :
Consider TLL under local density measurement I -, m

Effective field theory of unconditioned density matrix p¢:

6r =2 (6+0)
Stot|P1, O] = Solo+] + Solp-] + Seld+, o] _
o-=2(6-0
1
bulk action (c = 1 CFT):  So[p+] = /dxdmeK [(ax(b:l:)2 + (37@:)2]
boundary interaction:  Sg ~ /dde o(7) lAl (8p—)° |- u_Ag cos (qb_)]
0
y,u_ « u at UV scale Ag: UV cutoff

Careful treatment necessary for y :

it can be relevant in nonperturbative regimes despite being
perturbatively irrelevant (i.e., it is dangerously irrelevant)
cf. Masuki, Sudo, Oshikawa, YA., PRL 129, 087001 (2022);

Daviet and Dupuis, PRB 108, 184514 (2023)

Call for nonperturbative RG analysis

see also: Garratt, Weinstein, Altman, PRX 13, 021026 (2023) for conditioned evolution of TLL under local meas.



Tomonaga-Luttinger liquid under local measurement

Sg ~ /dxdT o(7) [Al (8xgb_)2 — u_Ag cos (gb_)} y,u_ « u at UV scale
0

Functional RG results

K>1/2 | | | | K >1/2

U > U, - u_ diverges in IR limit — ¢_ obeys Dirichlet b.c.
U< uc - u_isirrelevant — ¢_ obeys Neumann b.c.

Entanglement transition
induced by environment

K<1/2
3.0-6' 1 u4 diverge atany u > 0 — ¢, obey Dirichlet b.c.’s
0.4r
0.2} ; Arbitrarily weak coupling
0 . . . A . can affect entanglement in IR limit

0 0.05 0.1 0.15 0.2 0.25 0.3



Boundary CFT (BCFT) calculation of the g function

torus
Folding — 4-component theory on the cylinder.

, T —5H ~ =

b9 Zr,r, = (Tile” 2777 |Do) = g, gr, et
g Construct a conformal boundary state |I;) that satisfies
X  conformal invariance
l l folding * invariance under space-time interchange (Cardy condition)
[ * b.c.’s identified by the RG analysis
cylinder
— g function: gr, = <F¢|GS>
b, @, ¢, O, B/2 T
[
L

see also: Oshikawa, Chamon, Affleck J. Stac. Mech. P0O2008 (2006); Furukawa and Kim, PRB 83, 085112 (2011)



Boundary CFT (BCFT) calculation of the g function

torus . .
Folding — 4-component theory on the cylinder.
, T —5H ~ =
@ Zr,r, = (Tile” 27t |Ty) ~ gr, gr, et
g Construct a conformal boundary state |I;) that satisfies
X + conformal invariance
l l folding * invariance under space-time interchange (Cardy condition)
[ * b.c.’s identified by the RG analysis
cylinder
— g function: gr, = (I';|GS)
(p15 (p1 (pz’ (DQ B/2
[
| g function as “Ground-state degeneracy”:
“imaginary time” s After interchanging space and time:
: AT T
! L —LH 1+2
| ZF1F2 =tre CFT
' “infinite-size” limit £ > L 7B
L i [ ~ 37,
[5 i 1 ~ grl gFQ e 3L
PBC! C : p ”
: onstant thermal entropy independent of “temperature” 1/L
X ' gr = “noninteger ground-state degeneracy” of Hgi};?
=
B/2

“space” Affleck and Ludwig, PRL 67, 161 (1991)



Boundary CFT (BCFT) calculation of the g function

Folding — 4-component theory on the cylinder.
B> L

- _Bg usel
RG phase diagram ZF1F2 — <F1 ’6 5 HcFT ’F2> ~ gr,gr,e3k
’ :
K>1/2 .
0.8l g eS0 = /2K | Construct a conformal boundary state |I;) that satisfies

 conformal invariance
* invariance under space-time interchange (Cardy condition)
* b.c.’s identified by the RG analysis

— g function: gr, = (I';|GS)

BCFT results of TLL under density measurement:
V2K > pe, K >1/2
=4q1 < prey, K >1/2
2K Vu>0,K <1/2

S0 Zeg . 9¢
Zz 91

technical remarks:
* |I;) : superposition of Ishibashi states

0 0.05 0.1 0.15 0.2 0.25 0.3 '«  Mixed Dirichlet-Neumann boundary conditions
. Jge cannot be obtained from a mere product of g functions for
single-component theory.

e Additional factor determined from the unit-cell volume of the
compactification lattice.

YA, Furukawa, Oshikawa, arXiv:2311.16343 (2023)



Case study of the XXZ chain

L

=1

Hamiltonian:
K — oo K=1/2

Initial state pg : the gapless GS of Hyy, with —1 <A <1

. : : oA hv | 1 A\ 2 A 2
Effective Hamiltonian (TLL):  Hog = / dr [? (am) + K (awe) } ,

: A

2a . -
3 ~Y — — J
; p »¢ +c1(—1) COS(2¢)’ *compactification conditions:

p~p+mn, 0~60+2rm, n,m e Z.

A

6 o~ e'f [02 (—1)? + ¢3 cos(2¢)] ,

Decoherence along z axis (= unconditioned evolution under imperfect projection measurements):
1467

pe = H ka,jﬁsf(:,m with IA{O,,L- = cos(1, f{i,i = sin ¢ 5
J m

S |pe)= exp{—,u [2(1 — &]z. R &j)] }|GS)®|GS> ~ density measurement of TLL

_ ot R
S Pe = €7 Ps ﬁ(P)=—§Z(L;Ljp+pL;Lj—2Lij}) Li = \yof

Coupling strength : U =—Incos{ =yt
Strong coupling limit: 4 = © < { — % (projection meas.) « t — oo (long-time limit in the Lindblad evolution)



Numerical check in the XXZ chain

L

Exact diagonalization of FIXXZ = JZ (&f’&fﬁrl + (3?6?“ + A&Z&f+1) —-1<A<I1
=1 K - o K :%

— directly calculate |pe)= eXP{—M[Z(l —0; ® 57;-)} }|GS>®|GS> and Sse = —In(pg|pe)
i

— determine sy numerically by fitting Ssg to Ssg = s1L — so + S%

cf. RG + BCFT analysis:

K>1/2'
- eS0 = /2K

1.0 . /D/O/Q' o
K =075
CEm K
e-° R/j critical
, J2K
11y R/j point e | ~ 468,10
' AL =6810,12
[ =810,12,14
N o =1012,14.16 |
0 0.2 0.4 0.6 0.8 1 1.0
m

v’ transition at critical point u = u,

v’ convergence to V2K at u > u,

Consistent with RG and BCFT results



Numerical check in the XXZ chain

L
Exact diagonalization of Hxxz = JZ (6767, +06l6) + A6767,) -1<A<1
1=1 K — o K :l
2
— directly calculate |pe)= eXP{—M[Z(l —0; ® 57;-)} }|GS>®|GS> and Sse = —In(pg|pe)
j
— determine sy numerically by fitting Ssg to Ssg = s1L — so + %
' mﬁ T (K =0.75) o
o | 1 |
e R/j critical o 7R o PR
1.1¢ ; point p. -o-L=468,10 1 1.1t &o/n 0= [o=7
~a-L=681012 | | 0 A Lo=9
L =8,10,12,14 Peea Lo=11
1t —o— L =10,12,14,16 | 1.—5:9”5‘"& —o0— [,=13
0 0.2 0.4 06 08 1 1.0 0.8 0.6 0.4 0.2 0
m (H—we) Lo
v’ transition at critical point u = v data collapse with a universal form:
v’ convergence to V2K at u > u, ge _ 1/v
= (e p ") v~ 60

Consistent with RG and BCFT results



Numerical check in the XXZ chain

L
Exact diagonalization of Hxxz = JZ (&f&fﬁrl + &f&;-yH + A&f&fH) —1<A<1
=1 K - oo K = l
2
Converged values of e®0 with a varying A Numerical phase diagram
' | ' 2.5[ : ' ' '
— K 9¢/97 = 2K
251 o p=3, L=10,12,14,16 | 27 o
: (o]
~ :
@ » N 15} 0o /gy=oK § . o
o)) 2
1
° 9s/97 =1
1.5} (o)
0.5
1 Ot. ; , . . .-
1 0 0.5 1 1.5 2 25
K
v’ consistent with Bethe-ansatz result: v’ qualitatively consistent with fRG analysis
A
K = -
2(m—cos™ 1 A)

Numerical results agree with the field-theoretical analysis
despite small system sizes.



Possible experimental test in uvltracold gases

Quantum gas microscopy

environment

local density measurement by

system
Ultracold|atoms

image: Greiner group at Harvard



Possible experimental test in uvltracold gases

N GRS -
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1) Prepare the two identical copies of a 1D critical Bose gas described by the TLL.

2) Perform a weak density measurement by light scattering while discarding the outcomes.

*Measurement strength u can be controlled by changing exposure time or intensity of probe light.

3) Perform a beam-splitter operation between the two copies and
measure the site-resolved occupation number {n; ,} in each copy a € {1,2}.

cf. Daley et al., PRL 109, 020505 (2012)

4) Repeat 1) - 3), and evaluate the expectation value of swap operator: Sgg = E[(—l)zf 2]

*no postselection is required. small size L ~15 would be enough according to our numerical results.

*each step has already been realized in experiments:
e.g., Islam et al., Nature 528, 77 (2015); Lueschen et al.,, PRX 7, 011034 (2017) ...



Dissipative QPT in Josephson junctions

Masuki, Sudo, Oshikawa, YA, PRL 129, 087001 (2022)
Yokota, Masuki, YA, PRA 107, 043709 (2023)



Dissipative quantum phase transition in Josephson junctions

Resistively shunted Josephson junction (RSJ):

Artificial atom <+ Resistance

E,

Prototypical model to study quantum dissipation [Caldeira & Leggett, PRL 46, 211 (1981)].

RSJ Hamiltonian

X ) 2
H = Ec (N | ﬁr) — Ejcos(p) + Z hwkzdzdka

0<k<K
| ] |

JJ + interaction

Environment

L
0<k<K
A 0 Rg h 2e2
N = —1— — — _
'9,°“T R~ 2e2R T Oy
T 2T
w = kv, k:Z’f’ L K.

@ = Rg/R : dissipation strength

W = vK : frequency cutoff in environment
wideband condition (E¢, E; < AW)

Controversy regarding quantum phase
transition (QPT):

Perturbative RG suggests QPT at a=1
Schmid, PRL 51, 1506 (1983)

Fisher & Zwerger, PRB 32, 6190 (1985)

Kane & Fisher, PRB 46, 15233 (1992)
Furusaki & Nagaosa, PRB 47, 4631 (1993)

yet, no concrete experimental evidence...
see e.g., Murani et al., PRX 10, 021003 (2020)



Dissipative quantum phase transition in Josephson junctions

We reexamine the problem by nonperturbative analysis:

Imaginary-time boundary action (the same one as in TLL under density measurement):

Stel =5 | ok (% %’;i) oul? =l [ do cos (p(o)).

W27T

e R w E,
o — — o =
2R, ¥ NE; “Cw

Previous (conventional) understanding:

* Scaling dimension implies that y = Em is irrelevant.
C

* Assume the validity of y — 0 limit.
* Consider the simplified, boundary sine-Gordon model.




Dissipative quantum phase transition in Josephson junctions

Phase potential:  E| : irrelevant E; : relevant
=g T\ T
alal W\
¢ ' @ '

Phase . delocalized <= localized

Insulator <> Superconductor

Previous (conventional) understanding: oo ¢ ¢ ¢

* Scaling dimension implies that y = EK is irrelevant.
C

trt

|
|
|
« Assume the validity of ¥ — 0 limit. O |
. : L . |
Consider the simplified, boundary sine-Gordon model. g Insulator : SC
—
L |
Perturbative RG + duality argument — I
. l
a <1 - E :irrelevant ¢ ¢ ¢ I T T T
a > 1 - E relevant Fisher and Zwerger, Phys. Rev. B 32, 6190 (1985). OO .I
] Kane and Fisher, PRB 46, 15233 (1992).

a=Rq/R




Dissipative quantum phase transition in Josephson junctions

v" Under wideband condition E¢, E; < AW,

y = EK is large at the initial stage of RG flow (i.e., at UV scale).
C

v" We need a careful analysis of the original action keeping the y term:

Sle] = 1/W d’“( M) onl? =l [ do cos (o().

2 J_w2r \4AnK | W
Conventional analysis Our nonperturbative analysis (y finite at UV scale)
y=>0 fRG NRG
o0 : 1F : : P oo
NN a=05 L
| 0.6 : 0.4
| @ 0.4
LIEI) Insulator | sc 0.2 0 0.3
=, | === U
L : 08 a=1.5 Ll?l 0.2 : SC
| =06 SC "
bbbttt ¥ os 01| |
0 1 00 0.2
a=Ra/R %504 08 12 16 2 05 "7 75 T
1/g, =va/r a=Ra/R

Nonperturbative effect due to y can qualitatively modify the phase diagram!

Masuki, Sudo, Oshikawa, YA., PRL 129, 087001 (2022)



Physical origin: dangerously irrelevant RG flows

. . A
dc phase mobility (order parameter) - u = o il_%w@@w A. Schmid, Phys. Rev. Lett. 51, 1506 (1983).

u > 0 — Insulator (phase delocalized)
1w = 0 — Superconducting (phase localized)

NRG result (e = Eciy/W) FRG result
0.25 ; : : : P e
OIO 5 *More detailed FRG analyses
05066680 0.8 ) give the qualitatively same
0.20¢ ] 0.6 results:
>
0.15F 0.4 Yokota, Masuki, and YA,
= 0.2 PRA 107, 043709 (2023);
i T S 5 W LR e 0 Daviet and Dupuis,
0.10¢ o £/E0-008 | ] 1 PRB 108, 184514 (2023).
g A E)/Ec=0.06 0.8
0.05 u & [ E)/E=0.04 | 0.6
2 O Ej/Eg=0.02 G 0'4
0.005° 10 20 30 40 50 0.2
RG step %04 08 12 16 2
1/, =va/m
(1) Insulator phase is initially favored. (1) At the initial RG flows, d;(E;/E.) < 0 (insulator favored)
5 {small E;/E; — flow to insulator fixed point {small E;/E¢ — flow to insulator fixed point
large E;/E — nonmonotonic flow to SC fixed point @) large E; /E; — nonmonotonic flow to SC fixed point

Both of NRG and FRG results indicate that y is dangerously irrelevant.
Masuki, Sudo, Oshikawa, YA., PRL 129, 087001 (2022)



Experimental relevance to long-high impedance waveguides

0l (w)

Phase coherence : (cos()) Admittance at low frequency: Y (w) = - (cos())

Joyez, PRL 110, 217003 (2013) oV (w) W

(cos(@)) # 0 — superconducting (cos(@)) = 0 — insulating

1

NRG flow of (cos(¢))

a=0.3

{cos(¥)y

O Ej/Ec=0.14
W £,/Ec=0.08

Ins.

SC |

COe66606660600606

O E,)/Ec=0.18 | |

® £,/Ec=0.04 | ]

0 10 20
RG steps : N

30

(energy scale ~ 27N)

* To identify DQPT in NRG, we need many RG steps = deep IR regime.

* The lowest frequency wpin Of waveguide
or finite temperature determines IR cutoff frequency.

l? waveguide (length L, velocity v)

EJ CJ
lj ] IR cutoff ~ v/L

— Signature of insulating phase ({cos(¢)) = 0) can be observed
at sufficiently low temperature & sufficiently long waveguide.

i

One possible example: long high-impedance superconducting waveguide
a large array (~33000 JJs)

— —

gL T T

Kuzmin et al.,
PRL 126, 197701 (2021).

L
s
m

Tendency to insulator phase, (cos(¢)) = 0.01, could be experimentally observed.
(L ~10mm,E; = 5.4 GHz, wy,i,/2m = 63 MHz, W /2m = 20 GHz )




Observation of the Schmid-Bulgadaev dissipative quantum phase transition

R. Kuzmin,» 2 N. Mehta,?2 N. Grabon,? R. A. Mencia,?3 A. Burshtein,* M. Goldstein,* and V. E. Manucharyan? 3

! Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USAEl
2 Department of Physics, University of Maryland, College Park, MD 20742, USA.
3 Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
4 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel.
(Dated: April 13, 2023)

Test Port Ohmic Environment Josephson Junction

One possible example: long high-impedance superconducting waveguide O;
. large array (~33000 JJs) '
0 0.3
] Kuzmin et al., % SC
* PRL 126, 197701 (2021). Ly 0.2f
0.1
Tendency to insulator phase, (cos(¢)) = 0.01, could be experimentally observed. %O RS By
a=Ra/R

(L ~10mm,E; = 5.4 GHz, wy,i,/2m = 63 MHz, W /2m = 20 GHz )




(short summary)
Measurement-induced phase transition in free bosons

Yokomizo and YA, arXiv:2405.19768.



Previous studies on measurement-induced phase transition (MIPT)

Measurement-induced phase transition (MIPT) =

Transition in the size scaling of the entanglement entropy S,
which occurs as the measurement strength is increased.

average over trajectories

!
Sa = E[—tr[ps In p4]]

T

reduced density matrix for each trajectory Pa = TrA“l/Jtraj)(lptraj |]

Common scenario: volume-to-area law MIPT

Volume law Sq L
Logarithmic scaling Sy InL ®
measurement
Area law S, « const. v strength
Examples: ¢ random unitary circuits + random projection measurements Fisher etal.,
Ann. Rev. Cond. Matt. 14, 335 (2023)

* interacting many-body systems + local continuous measurements  Fyjiand YA, PRB 102, 054302 (2020)
Gopalakrishnan and Gullans, PRL 126,
170503 (2021)
Turkeshi et al., PRB 103, 224210



Previous studies on measurement-induced phase transition (MIPT)

Measurement-induced phase transition (MIPT) =

Transition in the size scaling of the entanglement entropy S,
which occurs as the measurement strength is increased.
Situation in free-particle systems is somewhat exceptional.
Two proposed scenarios in free fermions:
(I) subvolume-to-area law MIPT

Subvolume law Area law measurement
@ > strength

. i i i - Alberton et al., Phys. Rev. Lett. 126, 170602 (2021)
n -
quantum-jump trajectories under local continuous measurements Buchhold et al., Phys. Rev. X 14, 041004 (2021)

« diffusive quantum trajectories in long-ranged systems Minato et al., PRL 128, 010603 (2022)
Mueller et al., PRL 128, 010605 (2022)

(Il) absence of MIPT (i.e., always area law)

Area law measurement
> strength
* Hamiltonian evolution + random projection measurements Cao et al., SciPost Phys. 7, 024 (2019)
and its field-theoretical analysis Poboiko et al., Phys. Rex. X 13, 041046 (2023)

Poboiko et al., Phys. Rex. Lett. 132, 110403 (2024)

What would happen in free bosons ?
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Array of particles in harmonic traps v —P|_Homodyne detector
with long-range couplings:
L a cimt S N Y A Y T Y
H= ) —(p; +%F — (% - % et st g s A R R
H = z > (B7 +%7) + ora (% — %) o r ®
Jj=1 j=1r=1
@ — oo shortrange coupling e.g., levitated nanoparticle array [optical binding force]
a— 0 : allto-all coupling [cf. Rieser et al., Science 377, 987 (2022)]
Continuous position measurement: E[dW,] = 0,dW,,dW, = b, dt
-~ 1 ~ ~ N2 _
dly) = |—iHdt — EZ(O" —(0,) )" dt + Z(on -
n n
A VY in Local — No MIPT
0 —_

n - y J o) J o)
/ﬁ (% £ &j+r) Nonlocal — MIPT

e.g., homodyne detection of scattered light
[cf. Rudolph et al., PRL 129, 193602 (2022)]

|y) remains Gaussian during the time evolution —
entanglement can be efficiently obtained from its covariance matrix
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Local measurement: 0,, = \/y%,
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o Area law 0.6
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€
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©
ho] +
o 0<b<l1 L]
g
a0
5 0 - ' ‘ ‘
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v System size
B
measurement strength 0.034
No MIPT -

(transition as a function of the measurement strength y )

*reproduces the previous result in the short-ranged system (¢ — ).
Minoguchi et al., SciPost 12, 9 (2022)

0.026

Mutual information

0.022

Transition at o, = 1 is induced by long-range couplings:

S 0.8 ||ﬁAB|| X Ll_a 0.018l

0.95

®
1

Minato, Sugimoto, Kuwahara, Saito, PRL 128, 010603 (2022)
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A y A A
Nonocal measurement: @, = /—a(x] + Xj4r)
r
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Presence of subvolume-to-area law MIPT
as the measurement strength y is increased.

The measurement can now suppress the rapid
entanglement growth due to the long-range couplings,
and the competition leads to the MIPT.
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A y A A
Nonocal measurement: @, = /—a(x] + Xj4r)
r
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Summary

 Entanglement between a many-body system and environment can exhibit phase
transition, which can be detected by a size-independent universal contribution s,.

* We have determined s, for TLL under local measurement by fRG + BCFT analysis
and confirmed it numerically.

 Qur analysis suggests that the dissipative QPT in Josephson junction and the
entanglement transition should belong to the same universality class.

 MIPT in free bosons can occur when both particle couplings and measurements are
long-ranged.
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