

Quantum-geometric effects in superconductors

Akito Daido

Kyoto University

Outline

Introduction

- Background: Topological materials, Quantum geometry
- Recent research: Quantum-geometric effects

Our motivation

- Brief introduction of our previous works
- Today's main topic:

Quantum-geometric effects in thermodynamic responses of SCs

Summary

Topological materials

Topological insulators & superconductors

and those with crystalline symmetries., interactions, and/or in non-Hermitian/open-quantum systems, etc.

Widely accepted as (possible) material phases not only by theorists and but also by experimentalists

Topological materials

Why topological and related materials are important?

Topological boundary states

Proposed/observed Unconventional material properties e.g., various Hall effects

C.-Z. Chang *et al.*, Science **340**, 167 (2013).

H. Park et al., Nature 622, 74 (2023).

⁺ Non-quantized AHE, Spin HE, Valley HE, and so on.

K. F. Mak et al., Science 344, 1489 (2014).

Search for topological and related materials: *Guiding principle to discover interesting physics*

Quantum geometry

Why is the guiding principle so successful?

+

• Quantum geometry often leads to interesting physics e.g., $\frac{dr}{dt} = \frac{\partial \epsilon_n(k)}{\partial k} - eE \times \Omega_n(k)$ \rightarrow various quantized/non-quantized Hall effects

Interesting physics?

Why? → ■ Quantum geometry often leads to interesting physics

For many material properties,

Interesting physics?

Why? \rightarrow **Quantum geometry** often leads to interesting physics

For quantum-geometric phenomena,

meaning **quantum-mechanical phenomena** *beyond energy dispersion* (cf. Drude theory, BCS theory), **triggered by nontrivial wave functions**

Studying quantum-geometric phenomena, not limited to topological ones, would be fruitful!

Recent research focus

Recent research focus

- Interesting physics by quantum geometry?
 In particular, quantum-geometric effects beyond Berry curvature?
 - Quantum-geometric quantities

Berry curvature, **quantum metric**, <u>their multipoles</u>, their non-Abelian extensions, Shift vector, etc.

e.g., Berry-curvature dipole

 $\partial_{k_i}\Omega_n(\boldsymbol{k})$

Nonlinear Hall effect by Berry-curvature dipole

• Dipolar structure of $\Omega(k) \rightarrow \text{Nonlinear Hall effect (w/ TRS)}$ $D_{ab} = \int_{L} f_0(\partial_a \Omega_b).$

- Higher-rank nonlinear Hall effects are induced by Berry-curvature multipoles C.-P. Zhang et al., Phys. Rev. B 107, 115142 (2023).

Quantum metric

$$g_n^{ij}(\mathbf{k}) = \operatorname{Re} \sum_{m(\neq n)} A_{nm}^i(\mathbf{k}) A_{mn}^j(\mathbf{k}) \qquad \text{Berry connection} \quad A_{nm}^i(\mathbf{k}) = -i\langle u_n(\mathbf{k}) | \partial_{k_i} u_m(\mathbf{k}) \rangle$$

of. $\Omega_n^{ij}(k) = 2 \operatorname{Im} \sum_{m(\neq n)} A_{nm}^i(\mathbf{k}) A_{mn}^j(\mathbf{k})$

"Distance" btw. neighboring Bloch states = How rapidly Bloch state changes at k

$$ds^{2} \equiv 1 - |\langle u_{n}(\boldsymbol{k} + d\boldsymbol{k})|u_{n}(\boldsymbol{k})\rangle|^{2} = g_{n}^{ij}(\boldsymbol{k}) dk^{i}dk^{j}$$

Studied in nonlinear optics, current noise, exciton levels, etc.

Conducting phenomena in (nearly) flat-band systems

 Significant attention after the discovery of twisted bilayer graphene =Nearly flat-band systems in condensed matter

> Review: E. Y. Andrei, A. H. MacDonald, Nat. Materials 19, 1265 (2020)

 $R_{xx}(k\Omega)$

Mott

-1.6

 $\theta = 1.16^{\circ}$

-1.8

Quantum metric plays an important role in flat-band SC

P. Törmä et al., Nature Reviews Physics 4, 528 (2022).

• Vanishing group velocity and inverse mass $v^i = \partial_{k_i} \epsilon = 0$, $(1/m^{ij} = \partial_{k_i} \partial_{k_j} \epsilon = 0)$.

- How can flat-band electrons super-conduct?
- Superfluid weight ↔ penetration depth

London eq.
$$j^{i} = D_{s}A^{i} = \frac{1}{\lambda^{2}}A^{i} \longrightarrow$$
 Meissner effect
 $D_{s,\text{conv}} = \frac{n}{m} \rightarrow 0$ for flat bands??

• Full expression of the Kubo formula: $D_s = D_{s,conv} + D_{s,geom}$

Quantum-geometric contribution enables SC in flat-band systems!

Quantum-geometric term $\sim \frac{4e^2\Delta\sqrt{\nu(1-\nu)}}{\hbar^2}\int \frac{d^d\mathbf{k}}{(2\pi)^d}g_{jl}(\mathbf{k}),$ in isolated flat-band limit

SC properties in nearly-flat band systems

Coherence length

• Superfluid weight $D_s = 1/\lambda^2$

Key to understanding the physics: Length scale related to quantum metric?

SC properties in nearly-flat band systems

■ Intuitive understanding: Overlapping Wannier functions P. Törmä *et al.*, Nat. Reviews Physics 4, 528 (2022).

Wannier spread: related to quantum metric

J.-X Hu, S. Chen and K. T. Law, arXiv:2308.05686

Flat-band materials highlight the importance of quantum geometry in SC.

Outline

Introduction

- Background: Topological materials, Quantum geometry
- Recent research: Quantum-geometric effects

Our motivation

- Brief introduction of our previous works
- Today's main topic:

Quantum-geometric effects in thermodynamic responses of SCs

Summary

Our motivation

Update our understanding of SC by quantum geometry

When/where?

Material platform of quantum-geometric SCs

1. Examples other than flat bands?

Those without twist? Bulk superconductors?

2. General conditions?

Identify quantum-geometric superconducting properties

<u>1. Equilibrium properties</u> Normal-SC, SC-SC phase transitions

Thermodynamic responses

2. Non-equilibrium properties

Our ambition: "Modern theory of superconductivity" ...?

Material platform of quantum-geometric SCs

1. Examples other than flat bands?

Those without twist? Bulk superconductors?

2. General conditions?

ŝ

How?

Identify quantum-geometric superconducting properties

<u>1. Equilibrium properties</u> Normal-SC, SC-SC phase transitions Thermodynamic responses

2. Non-equilibrium properties

Taisei Kitamura (D3) addressed many of these questions!

- 1. "SC in monolayer FeSe enhanced by quantum geometry" TK, AD, *et al.*, PRResearch 4, 023232 (2022).
- 2. "Quantum geometric effect on FFLO superconductivity" TK, AD, and Y. Yanase, PRB 106, 184507 (2023).
- **3. "Spin-triplet SC from quantum-geometry-induced ferromagnetic fluctuation"** TK, AD, and Y. Yanase, PRL **132**, 036001 (2024).

Material platform of quantum-geometric SCs

1. Examples other than flat bands?

Those without twist? Bulk superconductors?

2. General conditions?

■ How?

Identify quantum-geometric superconducting properties

1. Equilibrium properties Normal-SC, SC-SC phase transitions Thermodynamic responses

2. Non-equilibrium properties

- Taisei Kitamura (D3) addressed many of these questions!
 - 1. "SC in monolayer FeSe enhanced by quantum geometry"

TK, AD, et al., PRResearch 4, 023232 (2022).

ŝ

2. "Quantum geometric effect on FFLO superconductivity"

TK, AD, and Y. Yanase, PRB 106, 184507 (2023).

3. "Spin-triplet SC from quantum-geometry-induced ferromagnetic fluctuation" TK, AD, and Y. Yanase, PRL **132**, 036001 (2024).

Material platform of quantum-geometric SCs

1. Examples other than flat bands?

Those without twist? Bulk superconductors?

2. General conditions?

How?

Identify quantum-geometric superconducting properties

<u>1. Equilibrium properties</u> Normal-SC, **SC-SC phase transitions** Thermodynamic responses

2. Non-equilibrium properties

Taisei Kitamura (D3) addressed many of these questions!

- 1. "SC in monolayer FeSe enhanced by quantum geometry" TK, AD, *et al.*, PRResearch 4, 023232 (2022).
- 2. "Quantum geometric effect on FFLO superconductivity"

TK, AD, and Y. Yanase, PRB 106, 184507 (2023).

ŝ

3. "Spin-triplet SC from quantum-geometry-induced ferromagnetic fluctuation" TK, AD, and Y. Yanase, PRL **132**, 036001 (2024).

Material platform of quantum-geometric SCs

1. Examples other than flat bands?

Those without twist? Bulk superconductors?

2. General conditions?

How?

Identify quantum-geometric superconducting properties

<u>1. Equilibrium properties</u> Normal-SC, SC-SC phase transitions Thermodynamic responses

2. Non-equilibrium properties

Taisei Kitamura (D3) addressed many of these questions!

- 1. "SC in monolayer FeSe enhanced by quantum geometry" TK, AD, *et al.*, PRResearch 4, 023232 (2022).
- 2. "Quantum geometric effect on FFLO superconductivity" TK, AD, and Y. Yanase, PRB 106, 184507 (2023).

3. "Spin-triplet SC from quantum-geometry-induced ferromagnetic fluctuation"

TK, AD, and Y. Yanase, PRL 132, 036001 (2024).

ŝ

When/where?

Material platform of quantum-geometric SCs

1. Examples other than flat bands?

Those without twist? Bulk superconductors?

2. General conditions?

■ How?

Identify quantum-geometric superconducting properties

1. Equilibrium properties Normal-SC, SC-SC phase transitions Thermodynamic responses

2. Non-equilibrium properties

- Today's topic AD, TK, and Y. Yanase, arXiv:2310.15558.
 - Our recent efforts to study some general aspects regarding equilibrium properties
 - Is it possible to transparently extract quantum-geometric effects?

Ex.)
$$D_s = D_{s,conv} + D_{s,geom}$$

Study Kubo formula and separate terms by hand

$$D_{\mu\nu}^{\text{conv}} = -\sum_{n\sigma k} \langle u_{nk} | \partial_{\mu} H_{0k} | u_{nk} \rangle \langle u_{nk} | \partial_{\nu} H_{0k} | u_{nk} \rangle \left(\sigma \frac{|\Delta_k|^2}{E_{nk}^3} f(\sigma E_{nk}) - \frac{|\Delta_k|^2}{E_{nk}^2} f'(\sigma E_{nk}) \right),$$

$$D_{\mu\nu}^{\text{geom}} = \sum_{n \neq m\sigma\sigma' k} \langle u_{nk} | \partial_{\mu} H_{0k} | u_{mk} \rangle \langle u_{mk} | \partial_{\nu} H_{0k} | u_{nk} \rangle \frac{f(\sigma E_{nk}) - f(\sigma' E_{mk})}{\sigma E_{nk} - \sigma' E_{mk}} \left(\sigma \sigma' \frac{|\Delta_k|^2}{E_{nk} E_{mk}} \right),$$

$$D_{\mu\nu}^{\text{geom}} = -\sum_{n\sigma k} \langle u_{nk} | \partial_{\mu} \Delta_k | u_{nk} \rangle \langle u_{nk} | \partial_{\nu} H_{0k} | u_{nk} \rangle \left(-\sigma \frac{\Delta_k \epsilon_{nk}}{E_{nk}^3} f(\sigma E_{nk}) + \frac{\Delta_k \epsilon_{nk}}{E_{nk}^2} f'(\sigma E_{nk}) \right),$$

Material platform of quantum-geometric SCs

1. Examples other than flat bands?

Those without twist? Bulk superconductors?

2. General conditions?

■ How?

Identify quantum-geometric superconducting properties

- 1. Equilibrium properties Normal-SC, SC-SC phase transitions Thermodynamic responses
- 2. Non-equilibrium properties
- Today's topic AD, TK, and Y. Yanase, arXiv:2310.15558.
 - Our recent attempts to study some general aspects regarding equilibrium properties
 - Is it possible to transparently extract quantum-geometric effects?
 - Our strategy: take careful band representation and start from free energy
 - Future plan

Outline

Introduction

- Background: Topological materials, Quantum geometry
- Recent research: Quantum-geometric effects

Our motivation

- Brief introduction of our previous works
- Today's main topic:

Quantum-geometric effects in thermodynamic responses of SCs

Summary

SCs with and without quantum geometry

SCs with and without quantum geometry

Simplifying assumption (removed later): spin-singlet s-wave pair		
$\Delta_0 \sum_l (c^\dagger_{oldsymbol{k}\uparrow,l}c^\dagger_{-oldsymbol{k}\downarrow,l}-c^\dagger_{oldsymbol{k}\downarrow,l}c^\dagger_{-oldsymbol{k}\uparrow,l}).$		
Bogoliubov-de Gennes (BdG) Hamiltonian	$H_{\rm BdG}(\boldsymbol{k}) = \begin{pmatrix} H_{\rm N}(\boldsymbol{k}) & \Delta_0 \\ \Delta_0 & -\Theta H_{\rm N}(-\boldsymbol{k}) \Theta \end{pmatrix}$	$(\hat{H} = \frac{1}{2} \sum_{\boldsymbol{k}} \Psi^{\dagger}(\boldsymbol{k}) H_{\mathrm{BdG}}(\boldsymbol{k}) \Psi(\boldsymbol{k}) + \mathrm{const.},$ $[\Psi^{\dagger}(\boldsymbol{k})]_{l} = (c^{\dagger}_{\uparrow,l}(\boldsymbol{k}), c^{\dagger}_{\downarrow,l}(\boldsymbol{k}), c_{\downarrow,l}(-\boldsymbol{k}), -c_{\uparrow,l}(-\boldsymbol{k})).$
Time-reversal partner of $H_{\rm N}(\mathbf{k})$ ($\Theta \equiv -is_y K$)		
Band representation	$H_{ m b}(oldsymbol{k})\equiv U_{ m b}(oldsymbol{k})H_{ m BdG}(oldsymbol{k})U_{ m b}^{\dagger}(oldsymbol{k})$	$U_{\rm b}(\boldsymbol{k}) = \begin{pmatrix} U_{\rm N}(\boldsymbol{k}) \\ \Theta U_{\rm N}(-\boldsymbol{k})\Theta^{-1} \end{pmatrix}$
Unitary trans. diagonalizing normal-state parts	$= \begin{pmatrix} \hat{\epsilon}(\boldsymbol{k}) & \Delta_{\rm b}(\boldsymbol{k}) \\ \Delta_{\rm b}(\boldsymbol{k})^{+} & -\hat{\epsilon}_{\Theta}(-\boldsymbol{k}) \end{pmatrix}$	$[\Delta_{\mathrm{b}}(\boldsymbol{k})]_{nm} = \Delta_0 \left< u_n(\boldsymbol{k}) \Theta u_m(-\boldsymbol{k}) \right>,$

e.g., for time-reversal symmetric normal states,

$$H_{\rm b}(\boldsymbol{k}) = \bigoplus_{n} \begin{bmatrix} \epsilon_n(\boldsymbol{k}) & \Delta_0 \\ \Delta_0 & -\epsilon_n(\boldsymbol{k}) \end{bmatrix}$$

$$H_{\rm b}(\boldsymbol{k}) = \begin{bmatrix} \epsilon_n(\boldsymbol{k}) & \Delta_0 \\ \Delta_0 & -\epsilon_n(\boldsymbol{k}) \end{bmatrix}$$

24/34

SCs with and without quantum geometry

25/34

$$\begin{array}{ll} \textbf{Band representation} & H_{\rm b}(\boldsymbol{k}) \equiv U_{\rm b}(\boldsymbol{k}) H_{\rm BdG}(\boldsymbol{k}) U_{\rm b}^{\dagger}(\boldsymbol{k}) & & \\ & U_{\rm b}(\boldsymbol{k}) = \begin{pmatrix} U_{\rm N}(\boldsymbol{k}) & \\ & \Theta U_{N}(-\boldsymbol{k})\Theta^{-1} \end{pmatrix} \\ & = \begin{pmatrix} \hat{\epsilon}(\boldsymbol{k}) & \Delta_{\rm b}(\boldsymbol{k}) \\ & \Delta_{\rm b}(\boldsymbol{k})^{+} & -\hat{\epsilon}_{\Theta}(-\boldsymbol{k}) \end{pmatrix} & & \\ & [\Delta_{\rm b}(\boldsymbol{k})]_{nm} = \Delta_{0} \left\langle u_{n}(\boldsymbol{k}) | \Theta u_{m}(-\boldsymbol{k}) \right\rangle, \end{array}$$

For time-reversal symmetric normal states,

$$H_{b}(\mathbf{k}) = \bigoplus_{n} \begin{bmatrix} \epsilon_{n}(\mathbf{k}) & \Delta_{0} \\ \Delta_{0} & -\epsilon_{n}(\mathbf{k}) \end{bmatrix}$$

$$H_{b}(\mathbf{k}) = \begin{bmatrix} \epsilon_{n}(\mathbf{k}) & \Delta_{0} \\ \Delta_{0} & -\epsilon_{n}(\mathbf{k}) \end{bmatrix}$$

$$E_{n}(\mathbf{k}) = \pm \sqrt{\epsilon_{n}(\mathbf{k})^{2} + \Delta_{0}^{2}}$$
Quantum geometry does not appear in e.g., specific heat, DOS, etc.

The situation changes for the *responses* to the perturbation

Ex. Response to vector potential $A \leftrightarrow$ Cooper-pair momentum q

Single-band $H_{b}(\boldsymbol{k}) = \begin{bmatrix} \epsilon_{n}(\boldsymbol{k} + \boldsymbol{q}) & \Delta_{0} \\ \Delta_{0} & -\epsilon_{n}(\boldsymbol{k} - \boldsymbol{q}) \end{bmatrix}$

$$\epsilon_n(\mathbf{k} + \mathbf{q}) \simeq \epsilon_n(\mathbf{k}) + q_i \partial_{k_i} \epsilon(\mathbf{k}) + \frac{1}{2} q_i q_j \partial_{k_i} \partial_{k_j} \epsilon(\mathbf{k})$$

- $O(q) \rightarrow$ Dopper shift of quasiparticle energy, to give "paramagnetic-current" contribution of D_s
- $O(q^2) \rightarrow$ to give "diamagnetic-current" contribution responsible for $D_s = \frac{n}{m}$ at T = 0

$$D_{s,\text{conv}} = \partial_q^2 F = \frac{n}{m}$$

The situation changes for the *responses* to the perturbation

Ex. Response to vector potential $A \leftrightarrow$ Cooper-pair momentum q

 $[H_{b}(\boldsymbol{k})]_{nn} = \begin{bmatrix} \epsilon_{n}(\boldsymbol{k} + \boldsymbol{q}) & [\Delta_{b}(\boldsymbol{k};\boldsymbol{q})]_{nn} \\ [\Delta_{b}^{*}(\boldsymbol{k};\boldsymbol{q})]_{nn} & -\epsilon_{n}(\boldsymbol{k} - \boldsymbol{q}) \end{bmatrix}$ $[\Delta_{b}(\boldsymbol{k};\boldsymbol{q})]_{nn} = \Delta_{0}\langle u_{n}(\boldsymbol{k} + \boldsymbol{q})|\Theta u_{n}(-\boldsymbol{k} + \boldsymbol{q})\rangle$ $= \Delta_{0}\langle u_{n}(\boldsymbol{k} + \boldsymbol{q})|u_{n}(\boldsymbol{k} - \boldsymbol{q})\rangle \quad \text{(up to phase)}$

 $= e^{-i\theta_{nn}(k;q)} \left(\Delta_0 - \Delta_0 q_i q_j g_n^{ij}(\mathbf{k}) + O(q^3) \right)$

Quantum metric appears as additional q dependence in pair potential cf. L. Liang, *et al.*, PRB **96**, 064511 (2017).

 $D_s = D_{s,conv} + D_{s,geom}$

Single-band $H_{b}(\boldsymbol{k}) = \begin{bmatrix} \epsilon_{n}(\boldsymbol{k} + \boldsymbol{q}) & \Delta_{0} \\ \Delta_{0} & -\epsilon_{n}(\boldsymbol{k} - \boldsymbol{q}) \end{bmatrix}$

$$\epsilon_n(\mathbf{k} + \mathbf{q}) \simeq \epsilon_n(\mathbf{k}) + q_i \partial_{k_i} \epsilon(\mathbf{k}) + \frac{1}{2} q_i q_j \partial_{k_i} \partial_{k_j} \epsilon(\mathbf{k})$$

- $O(q) \rightarrow$ Dopper shift of quasiparticle energy, to give "paramagnetic-current" contribution of D_s
- $O(q^2) \rightarrow$ to give "diamagnetic-current" contribution responsible for $D_s = \frac{n}{m}$ at T = 0

$$D_{s,\text{conv}} = \partial_q^2 F = \frac{n}{m}$$

Technical remark

Direct expansion of LHS yields gauge-dependent expressions

$$\begin{split} [\Delta_{\mathrm{b}}(\boldsymbol{k};\boldsymbol{q})]_{nn} &= \Delta_{0} \langle u_{n}(\boldsymbol{k}+\boldsymbol{q}) | u_{n}(\boldsymbol{k}-\boldsymbol{q}) \rangle \\ &= \Delta_{0} \left(1 - 2iq_{j}A_{nn}^{j}(\boldsymbol{k}) + q_{i}q_{j} \left(g_{n}^{ij}(\boldsymbol{k}) + 2A_{nn}^{i}(\boldsymbol{k})A_{nn}^{j}(\boldsymbol{k}) \right) + O(q^{3}) \right) \end{split}$$

• This comes from the gauge dependence of
$$|u_n(\mathbf{k} \pm \mathbf{q})\rangle$$

When $|u_n(\mathbf{k})\rangle \rightarrow |u_n(\mathbf{k})\rangle e^{i\chi_n(\mathbf{k})}$, $\langle u_n(\mathbf{k} + \mathbf{q})|u_n(\mathbf{k} - \mathbf{q})\rangle \rightarrow e^{-i\chi_n(\mathbf{k} + \mathbf{q}) + i\chi_n(\mathbf{k} - \mathbf{q})}\langle u_n(\mathbf{k} + \mathbf{q})|u_n(\mathbf{k} - \mathbf{q})\rangle$

• RHS can be made gauge-invariant by multiplying a Berry phase factor $e^{i\theta_{nn}(k;q)}[\Delta_{\rm b}(k;q)]_{nn}$: gauge invariant

$$\theta_{nn}(\boldsymbol{k};\boldsymbol{q}) = \gamma_n(\boldsymbol{k};\boldsymbol{q}) - \gamma_n(\boldsymbol{k},-\boldsymbol{q}) \qquad \gamma_n(\boldsymbol{k};\boldsymbol{q}) = \int_0^{\boldsymbol{q}} d\boldsymbol{k'}_i \ A_{nn}^i(\boldsymbol{k}+\boldsymbol{k'}) \ \left(\rightarrow \gamma_n'(\boldsymbol{k};\boldsymbol{q}) = \gamma_n(\boldsymbol{k};\boldsymbol{q}) + \chi_n(\boldsymbol{k}+\boldsymbol{q}) - \chi_n(\boldsymbol{k}) \right)$$

• Expansion of $e^{i\theta_{nm}(k;q)}[\Delta_b(k;q)]_{nm}$ is transparent, ensuring gauge covariance at any order of q:

$$e^{i\theta_{nm}(\boldsymbol{k};\boldsymbol{q})}[\Delta_{\mathrm{b}}(\boldsymbol{k};\boldsymbol{q})]_{nm} = \sum_{l=0}^{\infty} c_{nm}^{l}(\boldsymbol{k})q^{l} \rightarrow \sum_{l=0}^{\infty} e^{-i\chi_{n}(\boldsymbol{k})+i\chi_{m}(\boldsymbol{k})}c_{nm}^{l}(\boldsymbol{k})q^{l} \qquad \text{cf. } \langle u_{n}(\boldsymbol{k})|0|u_{m}(\boldsymbol{k})\rangle$$

Quantum-geometric pair potential (QGPP)

Pair potential in band representation is key to quantum-geometric effects.

The difference appears in response to the perturbation

Quantum-geometric pair potential (QGPP)

Pair potential in band representation is key to quantum-geometric effects.

Indeed, it is solely responsible for quantum-geometric effects to SC thermodynamic responses.

Consider time-reversal-odd external field X = (q, h, ...)Thermodynamic coeff. Free energy $F(X) = F(0) + X_a X_b \chi^{X_a X_b} + O(X^4)$

$$F(\mathbf{X}) = -\frac{1}{2\beta} \sum_{\mathbf{k}} \operatorname{Tr}\left[\ln\left(1 + e^{-\beta H_{\text{BdG}}(\mathbf{k};\mathbf{X})}\right)\right] + \text{const.}$$
$$= -\frac{1}{2\beta} \sum_{\mathbf{k}} \operatorname{Tr}\left[\ln\left(1 + e^{-\beta H_{\text{b}}(\mathbf{k};\mathbf{X})}\right)\right] + \text{const.}$$

After removing the phase of pair potential, $Collection \ of \ single-band \ SCs \qquad \Delta_{b} = \Delta_{0} + \Delta_{g}$ $H_{b}(\boldsymbol{k}; \boldsymbol{X}) = \begin{bmatrix} \hat{\epsilon}(\boldsymbol{k}; \boldsymbol{X}) & \Delta_{0} \\ \Delta_{0} & -\hat{\epsilon}(\boldsymbol{k}; -\boldsymbol{X}) \end{bmatrix} + \begin{bmatrix} 0 & \Delta_{g}(\boldsymbol{k}; \boldsymbol{X}) \\ \Delta_{g}^{+}(\boldsymbol{k}; \boldsymbol{X}) & 0 \end{bmatrix}$ W/o quantum geometry W/ quantum geometry

Pair potential in band representation is key to quantum-geometric effects.

Indeed, it is solely responsible for quantum-geometric effects to SC thermodynamic responses.

Consider time-reversal-odd external field X = (q, h, ...)Thermodynamic coeff. Free energy $F(X) = F(0) + X_a X_b \chi^{X_a X_b} + O(X^4)$

QGPP in response to *X*: quantum geometry in the parameter space

$$\begin{bmatrix} \Delta_{\mathbf{g}}(\mathbf{k}; \mathbf{X}) \end{bmatrix}_{nm} \quad \underline{n} = \underline{m} \quad \simeq \left(\Delta_{0} - \Delta_{0} X_{i} X_{j} g_{n}^{X_{i} X_{j}}(\mathbf{k}) \right)$$
$$\underbrace{n \neq \underline{m}}_{n \neq \underline{m}} \quad \simeq \Delta_{0} \begin{bmatrix} 2i X_{i} A_{nm}^{X_{i}}(\mathbf{k}) \end{bmatrix}$$
$$\begin{bmatrix} g_{n}^{X_{i} X_{j}}(\mathbf{k}) = 2 \operatorname{Re} \sum_{m(\neq n)} A_{nm}^{X_{i}}(\mathbf{k}) A_{mn}^{X_{i}}(\mathbf{k}) \\A_{nm}^{X_{i}}(\mathbf{k}) = -i \langle u_{n}(\mathbf{k}; X) | \partial_{X_{i}} u_{m}(\mathbf{k}; X) \rangle \Big|_{X \to 0} \end{bmatrix}$$
For $X = h$,
 $A_{nm}^{X_{i}}(\mathbf{k}) = -i \langle u_{n}(\mathbf{k}; X) | \partial_{X_{i}} u_{m}(\mathbf{k}; X) \rangle \Big|_{X \to 0}$ For $X = h$,
 $\sim \langle n|s|m \rangle / \Delta E_{nm}$

"Quantum-geometric" effects in thermodynamic coeff. other than superfluid weight?

Usually, namely in weak-coupling SCs, quantum-geometric effects are not significant.

Setup: two-band model, noncentrosymmetric SC at T = 0 $-E_F$ $\chi_{\rm dia}^{X_i X_j} = \int_{\rm BZ} \frac{d^d k}{(2\pi)^d} \sum_{n=\pm 1} \frac{1}{m_n^{X_i X_j}} \frac{1}{2} \left[1 - \frac{\epsilon_n}{E_n} \right], \qquad \chi_{\rm g}^{X_i X_j} = 4 \int_{\rm BZ} \frac{d^d k}{(2\pi)^d} \, g^{X_i X_j} \frac{g^2 \Delta_0^2}{(E_+ + E_-)E_+E_-},$ Quantum-geometric contribution for $\Delta_0 \ll g \ll E_F$ $\chi^{q_i q_j} \leftrightarrow D_s$: superfluid weight $\chi^{h_i q_j}$: SC Edelstein effect $\chi^{h_i h_j}$: spin susceptibility =supercurrent-induced spin $\chi_{\rm dia}/\chi_{\rm g} \sim \frac{\Delta_0^2}{E^2} \ln\left(\frac{\Delta_0}{a}\right)$ $\sim \Delta_0^2/g^2$ $\sim \Delta_0^2/g^2$

• Platforms require an energy scale comparable with Δ_0

- Flat-band SCs $W \sim \Delta_0$, BCS-BEC SCs $E_F \sim \Delta_0$,
- (Nearly) degenerate bands $g \sim \Delta_0$ e.g., PT-sym magnets, $j = \frac{3}{2}$ SCs? \leftarrow Future study

Generalized to arbitrary situations, including...

- Non-s-wave SCs such as spin-triplet SC, and with other internal DOF
- Remains valid and gauge covariant for degenerate or entangled bands

Suppressing the argument *k*, $H_{\rm N} |u_n^{(\lambda)}\rangle = \epsilon_n |u_n^{(\lambda)}\rangle \quad [\Delta_{\rm b}]_{n\lambda,n'\lambda'} = \langle u_n^{(\lambda)} |\Delta| u_{n'}^{(\lambda')} \rangle$,

$$\begin{aligned} & \leftrightarrow \Delta_0[2iq_iA_{nm}^i(\boldsymbol{k})] \\ & \Delta_g\left(\boldsymbol{X}\right) = -iX_i\{A_{inter}^{X_i}, \Delta_b\} + \frac{1}{2}X_iX_j\left(-i[A_{inter;X_j}^{X_i}, \Delta_b]\right) \\ & -\{A_{inter}^{X_i}, \{A_{inter}^{X_j}, \Delta_b\}\}\right) + O(X^3), \end{aligned}$$
 covariant derivative of shift vector $A_{inter;X_j}^{X_i}(\boldsymbol{X}) \equiv \partial_{X_j}A_{inter}^{X_i}(\boldsymbol{X}) \\ & + i[A_{inter}^{X_j}(\boldsymbol{X}), A_{inter}^{X_i}(\boldsymbol{X})], \end{aligned}$

This implies...

- Can obtain physical low-energy models in the pseudospin basis with MCBB L. Fu, PRL (2015).
- Quantum-geometric effects beyond quantum metric?
- Possibility of engineering exotic superconducting states?

 $\Delta_{\rm g}\left(\boldsymbol{X}\right) = -iX_i\{A_{\rm inter}^{X_i}, \Delta_{\rm b}\} + O\left(X^2\right)$

Symmetry of X is encoded to QGPP \rightarrow e.g., effective chiral SC

Ex. noncentrosymmetric d-wave Rashba SC

- Due to inversion breaking, spin-singlet and triplet Cooper pairs coexist.
- We consider d-wave pairing admixed with p-wave pairing AD and Y. Yanase, PRB **95**, 134507 (2017).

 $\Delta_{\rm g}\left(\boldsymbol{X}\right) = -iX_i\{A_{\rm inter}^{X_i}, \Delta_{\rm b}\} + O\left(X^2\right)$

Symmetry of X is encoded to QGPP \rightarrow e.g., effective chiral SC

Ex. noncentrosymmetric d-wave Rashba SC

- Due to inversion breaking, spin-singlet and triplet Cooper pairs coexist.
- We consider d-wave pairing admixed with p-wave pairing AD and Y. Yanase, PRB **95**, 134507 (2017).

$$\Delta_{\rm b}(\boldsymbol{k}) \to \Delta_{\rm b}(\boldsymbol{k}) + \Delta_{\rm g}(\boldsymbol{k};\boldsymbol{X}): \quad \Delta_{\rm b}(\boldsymbol{k}) = -\left(\psi_0 \mp \frac{d_0}{k_F}\right)(k_x^2 - k_y^2), \quad \Delta_{\rm g}(\boldsymbol{k}) = -ih \; \frac{a_0}{gk_F^2} \; k_x k_y$$

_1

i.e., $d_{x^2-y^2}$ -wave SC \rightarrow Effectively $d_{x^2-y^2} + id_{xy}$ -wave SC by QGPP

Some more examples of systems e.g,. with (nearly) degenerate bands are given in our paper

• Non-unitary spin triplet states, anapole SC, ...

Summary

We have introduced QGPP to understand quantum-geometric effects in SCs

AD, TK, and Y. Yanase, arXiv:2310.15558.

- SCs with and without quantum geometry are different by QGPP, which appears in response to external perturbation.
- QGPP is responsible for the quantum-geometric thermodynamic responses.
- QGPP can be used to engineer exotic SC states by external field and quantum geometry
 - Topological SC, chiral SC, non-unitary SC, anapole SC, ...

Future plan

- Model studies for e.g., nearly degenerate SCs, $j = \frac{3}{2}$ SCs
- Extension to transport and AC responses & Exploring phenomena induced by quantum-geometry
- Giving exceptions to conventional notions of SCs e.g., spin susceptibility of spin-triplet SCs?