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Topological materials

Topological insulators & superconductors

Widely accepted as (possible) material phases
not only by theorists and but also by experimentalists

Schnyder et al. (2009)Xia et al. Nat. Phys. (2009)

and those with crystalline symmetries., interactions, 
and/or in non-Hermitian/open-quantum systems, etc. 

Sato et al. PRL (2009)
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Topological materials

n Topological boundary states

n Proposed/observed Unconventional material properties   e.g., various Hall effects

Why topological and related materials are important?

Search for topological and related materials:
Guiding principle to discover interesting physics

Fractionally QAHE in twisted MoTe2

H. Park et al., Nature 622, 74 (2023).

Quantized anomalous HE + Non-quantized
AHE, Spin HE,
Valley HE, and so on.

C.-Z. Chang et al., Science 340, 167 (2013). K. F. Mak et al., Science 344, 1489 (2014).
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Quantum geometry

n Topological materials have quantum geometry
• ≡ Nontrivial 𝒌-dependence of Bloch states
• e.g., Berry curvature

Why is the guiding principle so successful?

Topology

Quantum
geometry

𝐶 = ∫ 𝑑!𝑘 Ω"(𝒌)

Ω"(𝒌)

by Ω!(𝒌)e
𝑑𝒓
𝑑𝑡

=
𝜕𝜖"(𝒌)
𝜕𝒌

− 𝑒𝑬×𝛀"(𝒌)

global structure in BZ

local quantity in BZ

→ various quantized/non-quantized Hall effects

An origin of unconventional material properties

n Quantum geometry often leads to interesting physics

𝐻#(𝒌)|𝑢"(𝒌)⟩ = 𝜖"(𝒌)|𝑢" 𝒌 ⟩

Ω" 𝒌 = 𝑖 ⟨𝜕$!𝑢"(𝒌)|𝜕$"𝑢" 𝒌 ⟩ − (𝑥 ↔ 𝑦)
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e.g.,
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Interesting physics?

= ee

Same 𝜖! 𝑘

Single-band tight-binding modelA band 
in multi-band materials

𝜖! 𝑘

𝐸(
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n Quantum geometry often leads to interesting physicsWhy? →

For many material properties,



Interesting physics?

meaning quantum-mechanical phenomena beyond energy dispersion
(cf. Drude theory, BCS theory), triggered by nontrivial wave functions

For quantum-geometric phenomena,

≠ ee

Same 𝜖! 𝑘

Single-band tight-binding modelA band 
in multi-band materials

𝜖! 𝑘 Trivial |𝑢# 𝑘 ⟩Nontrivial |𝑢# 𝑘 ⟩

𝐸(
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Studying quantum-geometric phenomena, not limited to topological ones, would be fruitful!

n Quantum geometry often leads to interesting physicsWhy? →



Recent research focus

Topological

Quantum
geometric

Materials

• Interesting physics by quantum geometry?
In particular, quantum-geometric effects 
beyond Berry curvature?

Recent research focus

Berry curvature, quantum metric, their multipoles,
their non-Abelian extensions, Shift vector, etc.

Quantum-geometric quantities

e.g., Berry-curvature dipole

𝜕)!Ω*(𝒌)
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Nonlinear Hall effect by Berry-curvature dipole

Nonlinear Hall effect: e.g.,  𝑗% = 𝜎%&&𝐸&'

• Higher-rank nonlinear Hall effects are induced by Berry-curvature multipoles
C.-P. Zhang et al., Phys. Rev. B 107, 115142 (2023).

I. Sodemann and L. Fu, PRL 115, 216806 (2015), 
Q. Ma et al., Nature 565, 337 (2019), 
K. Kang et al., Nature Materials 18, 324 (2019).

𝑗" = 𝐸#.𝑑$𝑘 Ω 𝒌 𝑓(𝒌)

Ω 𝒌 > 0Ω 𝒌 < 0 Ω 𝒌 > 0Ω 𝒌 < 0

𝑘$

𝑘%

𝑘$

𝑘%Ex.)

𝐸% ≠ 0

𝒋𝒚 = 𝝈𝒚𝒙𝒙𝑬𝒙𝟐
𝜏𝐸%

Hall current by Ω(𝒌)

• Dipolar structure of Ω 𝑘 → Nonlinear Hall effect (w/ TRS) 

𝑗" = 0
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Quantum-metric effects

n Studied in nonlinear optics, current noise, exciton levels, etc.

n Quantum metric

𝐴"&' 𝒌 = −𝑖⟨𝑢"(𝒌)|𝜕$&𝑢& 𝒌 ⟩𝑔"
'( 𝒌 = Re D

&(*")

𝐴"&' 𝒌 𝐴&"
( (𝒌) Berry connection

cf. Ω#
'( 𝑘 = 2 Im∑)(+#)𝐴#)' 𝒌 𝐴)#

( (𝒌)

“Distance” btw. neighboring Bloch states = How rapidly Bloch state changes at 𝒌

𝑑𝑠! ≡ 1 − 𝑢" 𝒌 + 𝑑𝒌 𝑢" 𝒌 ! = 𝑔"
'( 𝒌 𝑑𝑘'𝑑𝑘(
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=Nearly flat-band systems 
in condensed matter

• Significant attention after the discovery 
of twisted bilayer graphene

Review: E. Y. Andrei, A. H. MacDonald,
Nat. Materials 19, 1265 (2020)

n Conducting phenomena in (nearly) flat-band systems



SC properties in nearly-flat band systems

n Vanishing group velocity and inverse mass
• How can flat-band electrons super-conduct?

n Superfluid weight ↔ penetration depth

Quantum metric plays an important role in flat-band SC 

𝑗6 = 𝐷7𝐴6 =
1
𝜆8
𝐴6London eq.

𝐷7,:;<= =
*
> → 0 for flat bands?? from Wikipedia

Meissner effect

• Full expression of the Kubo formula: 𝐷7 = 𝐷7,:;<= + 𝐷7,?@;A Quantum-geometric term

∼
in isolated flat-band limit

P. Törmä et al., Nature Reviews Physics 4, 528 (2022).

Quantum-geometric contribution enables SC 
in flat-band systems!

𝑣( = 𝜕)!𝜖 = 0, & 1/𝑚(* = 𝜕)!𝜕)"𝜖 = 0.
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SC properties in nearly-flat band systems

Key to understanding the physics: Length scale related to quantum metric?

n Superfluid weight

Twisted bilayer graphene

𝜆 →
1

𝐷7,?@;A
> 0 𝜉 → 𝜉?@;A > 0Flat-band limit

n Coherence length 𝜉

S. Chen and K. T. Law, PRL 132, 026002 (2024).
J.-X Hu, S. Chen and K. T. Law, arXiv:2308.05686

𝜉 ∼
𝑣+
Δ

𝐷, = 1/𝜆!
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A. Julku et al., PRB 101, 060505 (2020).
X. Hu et al., , PRL 123, 237002 (2019).



Electrons in vacuum

𝜖 𝒑 =
𝑝$

2𝑚

𝒑 ↔ 𝒙 =
𝑥

Electrons in solids

𝜓! 𝒌 = 𝑒(𝒌⋅.𝒙 𝑢!(𝒌)

SC properties in nearly-flat band systems

n Intuitive understanding: Overlapping Wannier functions P. Törmä et al., Nat. Reviews Physics 4, 528 (2022).

J.-X Hu, S. Chen and K. T. Law, arXiv:2308.05686

Flat-band materials highlight the importance of quantum geometry in SC.

𝑥

𝜖! 𝑘

↔ 𝑊!(𝑅) =

Wannier spread: related to quantum metric
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Our motivation

When and where?

Update our understanding of SC by quantum geometry
Motivation:

Our ambition: “Modern theory of superconductivity”…?

nWhen/where? nHow?

Material platform of 
quantum-geometric SCs

2. General conditions?

1. Examples other than flat bands?

Identify quantum-geometric
superconducting properties

1. Equilibrium properties

Normal-SC, SC-SC phase transitions

Thermodynamic responses

2. Non-equilibrium properties

Those without twist?
Bulk superconductors?
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Our efforts

When and where?

Motivation:

n When/where? n How?

Material platform of 
quantum-geometric SCs

2. General conditions?

1. Examples other than flat bands?

Identify quantum-geometric
superconducting properties

1. Equilibrium properties
Normal-SC, SC-SC phase transitions

Thermodynamic responses

2. Non-equilibrium properties

Those without twist?
Bulk superconductors?

n Taisei Kitamura (D3) addressed many of these questions!
1. “SC in monolayer FeSe enhanced by quantum geometry”

2. “Quantum geometric effect on FFLO superconductivity”

3. “Spin-triplet SC from quantum-geometry-induced ferromagnetic fluctuation”

TK, AD, et al., PRResearch 4, 023232 (2022).

TK, AD, and Y. Yanase, PRB 106, 184507 (2023).

… TK, AD, and Y. Yanase, PRL 132, 036001 (2024).
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Our efforts

When and where?

Motivation:

n When/where? n How?

Material platform of 
quantum-geometric SCs

2. General conditions?

1. Examples other than flat bands?

Identify quantum-geometric
superconducting properties

1. Equilibrium properties
Normal-SC, SC-SC phase transitions

Thermodynamic responses

2. Non-equilibrium properties

Those without twist?
Bulk superconductors?

n Today’s topic

• Is it possible to transparently extract quantum-geometric effects?

𝐷7 = 𝐷7,:;<= + 𝐷7,?@;A
Study Kubo formula and
separate terms by hand

Ex.)

AD, TK, and Y. Yanase, arXiv:2310.15558.
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• Our recent efforts to study some general aspects regarding equilibrium properties



Our efforts

When and where?

Motivation:

n When/where? n How?

Material platform of 
quantum-geometric SCs

2. General conditions?

1. Examples other than flat bands?

Identify quantum-geometric
superconducting properties

1. Equilibrium properties
Normal-SC, SC-SC phase transitions

Thermodynamic responses

2. Non-equilibrium properties

Those without twist?
Bulk superconductors?

n Today’s topic

• Our recent attempts to study some general aspects regarding equilibrium properties

• Is it possible to transparently extract quantum-geometric effects?

AD, TK, and Y. Yanase, arXiv:2310.15558.

• Our strategy: take careful band representation and start from free energy

• Future plan
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SCs with and without quantum geometry

vs. ee

Same 𝜖! 𝑘

Single-band modelA band 
in multi-band materials

𝜖! 𝑘 Trivial |𝑢# 𝑘 ⟩Nontrivial |𝑢# 𝑘 ⟩

𝐸(

Superconductors with and without quantum geometry:
How are they different?

e e

𝐻# 𝒌 = 𝑈# 𝒌
⋱

𝜖"(𝒌)
⋱

𝑈# 𝒌 - 𝐻# 𝒌 = 𝜖" 𝒌 1.×.

Normal-state Bloch Hamiltonian̂𝜖(𝒌)
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SCs with and without quantum geometry

Simplifying assumption (removed later): spin-singlet s-wave pair

Bogoliubov-de Gennes
(BdG) Hamiltonian 𝐻012 𝒌 =

𝐻#(𝒌) Δ3
Δ3 −Θ𝐻# −𝒌 Θ4.

Time-reversal partner of 𝐻/(𝒌) (Θ ≡ −𝑖𝑠"𝐾)

Band representation

=
̂𝜖(𝒌) Δ5(𝒌)

Δ5 𝒌 - − ̂𝜖6(−𝒌)

𝑈0 𝒌 =
𝑈/(𝒌)

Θ𝑈1 −𝒌 Θ23

e.g., for time-reversal symmetric normal states,

𝐻5 𝒌 =⊕"
𝜖"(𝒌) Δ3
Δ3 −𝜖"(𝒌)

𝐻5 𝒌 =
𝜖"(𝒌) Δ3
Δ3 −𝜖"(𝒌)

Unitary trans. diagonalizing
normal-state parts
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SCs with and without quantum geometry

Band representation

=
̂𝜖(𝒌) Δ5(𝒌)

Δ5 𝒌 - − ̂𝜖6(−𝒌)

𝑈0 𝒌 =
𝑈/(𝒌)

Θ𝑈1 −𝒌 Θ23

For time-reversal symmetric normal states,

𝐻5 𝒌 =⊕"
𝜖"(𝒌) Δ3
Δ3 −𝜖"(𝒌)

𝐻5 𝒌 =
𝜖"(𝒌) Δ3
Δ3 −𝜖"(𝒌)

Quantum geometry does not appear in
e.g., specific heat, DOS, etc.

𝐸! 𝑘 = ± 𝜖! 𝒌 $ + Δ4$
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Difference appears in responses

n Ex. Response to vector potential 𝑨↔ Cooper-pair momentum 𝒒

The situation changes for the responses to the perturbation

𝐻5 𝒌 =
𝜖"(𝒌 + 𝒒) Δ3

Δ3 −𝜖"(𝒌 − 𝒒)

𝜖! 𝒌 + 𝒒 ≃ 𝜖! 𝒌 + 𝑞(𝜕)!𝜖 𝒌 +
1
2
𝑞(𝑞*𝜕)!𝜕)"𝜖(𝒌)

• 𝑂(𝑞) → Dopper shift of quasiparticle energy,
to give “paramagnetic-current” contribution of 𝐷-

• 𝑂(𝑞.) → to give “diamagnetic-current” contribution
responsible for 𝐷- =

#
) at 𝑇 = 0

Single-band

𝐷7,:;<= = 𝜕a8𝐹 =
𝑛
𝑚free energy
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Difference appears in responses

n Ex. Response to vector potential 𝑨↔ Cooper-pair momentum 𝒒

The situation changes for the responses to the perturbation

𝐻5 𝒌 =
𝜖"(𝒌 + 𝒒) Δ3

Δ3 −𝜖"(𝒌 − 𝒒)

𝜖! 𝒌 + 𝒒 ≃ 𝜖! 𝒌 + 𝑞(𝜕)!𝜖 𝒌 +
1
2
𝑞(𝑞*𝜕)!𝜕)"𝜖(𝒌)

• 𝑂(𝑞) → Dopper shift of quasiparticle energy,
to give “paramagnetic-current” contribution of 𝐷-

• 𝑂(𝑞.) → to give “diamagnetic-current” contribution
responsible for 𝐷- =

#
) at 𝑇 = 0

𝐻5 𝒌 "" =
𝜖"(𝒌 + 𝒒) Δ5 𝒌; 𝒒 ""
Δ5
∗ 𝒌; 𝒒 "" −𝜖"(𝒌 − 𝒒)

Δ0 𝒌; 𝒒 !! = Δ4 𝑢! 𝒌 + 𝒒 Θ𝑢! −𝒌 + 𝒒
= Δ4 𝑢! 𝒌 + 𝒒 𝑢! 𝒌 − 𝒒 (up to phase)

Single-band

= 𝑒4'8// $;: Δ3 − Δ3𝑞'𝑞(𝑔"
'( 𝒌 + 𝑂 𝑞;

Quantum metric appears as
additional 𝑞 dependence in pair potential

𝐷7 = 𝐷7,:;<= + 𝐷7,?@;A 𝐷7,:;<= = 𝜕a8𝐹 =
𝑛
𝑚free energy

cf. L. Liang, et al., PRB 96, 064511 (2017).
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Difference appears in responses
28/34

Δ0 𝒌; 𝒒 !! = Δ4 𝑢! 𝒌 + 𝒒 𝑢! 𝒌 − 𝒒

Technical remark

• Direct expansion of LHS yields gauge-dependent expressions

= Δ4 1 − 2𝑖𝑞*𝐴!!
* 𝒌 + 𝑞(𝑞* 𝑔!

(* 𝒌 + 2𝐴!!( 𝑘 𝐴!!
* 𝒌 + 𝑂 𝑞5

• This comes from the gauge dependence of |𝑢#(𝒌 ± 𝒒)⟩

When 𝑢# 𝒌 → 𝑢# 𝒌 𝑒'0!(𝒌), 𝑢! 𝒌 + 𝒒 𝑢! 𝒌 − 𝒒 → 𝑒2(6# 𝒌7𝒒 7(6#(𝒌2𝒒 ) 𝑢! 𝒌 + 𝒒 𝑢! 𝒌 − 𝒒

• RHS can be made gauge-invariant by multiplying a Berry phase factor

𝑒'8// 𝒌;𝒒 Δ5 𝒌; 𝒒 "": gauge invariant

𝜃## 𝒌; 𝒒 = 𝛾# 𝒌; 𝒒 − 𝛾#(𝒌,−𝒒) 𝛾# 𝒌; 𝒒 = C
2

𝒒
𝑑𝑘′' 𝐴##' 𝒌 + 𝒌4 → 𝛾#4 𝒌; 𝒒 = 𝛾# 𝒌; 𝒒 + 𝜒# 𝒌 + 𝒒 − 𝜒# 𝒌

• Expansion of 𝑒'5!"(𝒌;𝒒) Δ7 𝒌; 𝒒 #) is transparent, ensuring gauge covariance at any order of 𝒒:

𝑒(;#$ 𝒌;𝒒 Δ0 𝒌; 𝒒 != = ∑>?4@ 𝑐!=> 𝒌 𝑞> → ∑>?4@ 𝑒2(6# 𝒌 7(6$(𝒌)𝑐!=> 𝒌 𝑞> cf. ⟨𝑢# 𝒌 𝑂 𝑢) 𝒌 ⟩



Quantum-geometric pair potential (QGPP)

Pair potential in band representation is key to quantum-geometric effects. 

n The difference appears in response to the perturbation 

𝐻0 𝒌;𝑿 = ̂𝜖(𝒌 + 𝒒) Δ0(𝒌; 𝒒)
Δ0(𝒌; 𝒒) − ̂𝜖(𝒌 − 𝒒) 𝑒'8/8(𝒌;𝒒) Δ5 𝒌; 𝒒 "& = Δ3𝛿"& + Δ> 𝒌; 𝒒 "&

removable

Quantum-geometric pair potential (QGPP)

≃ Δ2 − Δ2𝑞'𝑞(𝑔#
'( 𝒌𝑛 = 𝑚

≃ Δ2[2𝑖𝑞'𝐴#)' 𝒌 ]𝑛 ≠ 𝑚

• Inter-band pairs also appear

𝜃#) 𝒌; 𝒒 = 𝛾# 𝒌; 𝒒 − 𝛾)(𝒌,−𝒒)

𝛾# 𝒌; 𝒒 = C
2

𝒒
𝑑𝑘′' 𝐴##' (𝒌 + 𝒌4)
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Quantum-geometric effects in free energy

Pair potential in band representation is key to quantum-geometric effects. 

Indeed, it is solely responsible for quantum-geometric effects to SC thermodynamic responses.

Consider time-reversal-odd external field 𝑿 = (𝒒, 𝒉, … )

𝐹 𝑋 = 𝐹 0 + 𝑋l𝑋m 𝜒n&n' + 𝑂(𝑋o)Free energy 

Thermodynamic coeff.

After removing the phase of pair potential, 

𝐻0 𝒌;𝑿 = ̂𝜖(𝒌; 𝑿) Δ4
Δ4 − ̂𝜖(𝒌;−𝑿) +

0 ΔA(𝒌; 𝑿)
ΔA7(𝒌; 𝑿) 0

𝐹 𝑿 = −
1
2𝛽

D
𝒌

Tr ln 1 + 𝑒4?@9:; 𝒌;𝑿

+const.

= −
1
2𝛽

D
𝒌

Tr ln 1 + 𝑒4?@< 𝒌;𝑿

+const.

Collection of single-band SCs

W/o quantum geometry W/ quantum geometry

Δ0 = Δ4 + ΔA
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Quantum-geometric effects in free energy

Pair potential in band representation is key to quantum-geometric effects. 

Indeed, it is solely responsible for quantum-geometric effects to SC thermodynamic responses.

Consider time-reversal-odd external field 𝑿 = (𝒒, 𝒉, … )

𝐹 𝑋 = 𝐹 0 + 𝑋l𝑋m 𝜒n&n' + 𝑂(𝑋o)Free energy 

Thermodynamic coeff.

ΔO 𝒌;𝑿 PQ

QGPP in response to 𝑿: quantum geometry in the parameter space

≃ ΔR − ΔR𝑋S𝑋T𝑔P
UBUC 𝒌𝑛 = 𝑚

≃ ΔR[2𝑖𝑋S𝐴PQ
UB 𝒌 ]𝑛 ≠ 𝑚

“Quantum-geometric” effects in thermodynamic coeff. other than superfluid weight?

𝐴#)
=# 𝒌 = −𝑖 𝑢# 𝒌; 𝑋 𝜕=#𝑢) 𝒌;𝑿 Y

=→2

𝑔#
=#=$ 𝒌 = 2Re \

)(+#)

𝐴#)
=# 𝒌 𝐴)#

=$ (𝒌)

For 𝑋 = ℎ,
∼ ⟨𝑛 𝑠 𝑚⟩/Δ𝐸%&
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Illustration with two-band model

Usually, namely in weak-coupling SCs, quantum-geometric effects are not significant.

n Setup: two-band model, noncentrosymmetric SC at 𝑇 = 0
𝐸(

𝑔

Quantum-geometric contribution for Δ4 ≪ 𝑔 ≪ 𝐸+

𝜒D!D" ↔ 𝐷E: superfluid weight

∼ F%&

G'
& ln

F%
H

𝜒I!I": spin susceptibility

∼ Δ4$/𝑔$

𝜒I!D": SC Edelstein effect
=supercurrent-induced spin

∼ Δ4$/𝑔$

n Platforms require an energy scale comparable with Δ3
• Flat-band SCs 𝑊 ∼ Δ4, BCS-BEC SCs 𝐸+ ∼ Δ4,

• (Nearly) degenerate bands 𝑔 ∼ Δ4 e.g.,  PT-sym magnets, 𝑗 = 5
$

SCs?  ←Future study

𝜒JKL/𝜒A

32/34



General formula of QGPP

n Generalized to arbitrary situations, including…
• Non-s-wave SCs such as spin-triplet SC, and with other internal DOF
• Remains valid and gauge covariant for degenerate or entangled bands

Suppressing the argument 𝒌,

↔ −Δ2𝑞'𝑞(𝑔#
'( 𝒌

↔ Δ2[2𝑖𝑞'𝐴#)' 𝒌 ]

n This implies…
• Can obtain physical low-energy models in the pseudospin basis with MCBB
• Quantum-geometric effects beyond quantum metric?
• Possibility of engineering exotic superconducting states?
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L. Fu, PRL (2015).

covariant derivative 
cf. shift vector



Engineering of exotic SC states by QGPP

n Ex. noncentrosymmetric d-wave Rashba SC
• Due to inversion breaking, spin-singlet and triplet Cooper pairs coexist.
• We consider d-wave pairing admixed with p-wave pairing

𝐸(
𝑔

+𝑂(𝑋8)

Symmetry of 𝑿 is encoded to QGPP → e.g., effective chiral SC

AD and Y. Yanase, PRB 95, 134507 (2017).

𝒉 = ℎ𝑧̂
𝐶 = 4
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Engineering of exotic SC states by QGPP

n Ex. noncentrosymmetric d-wave Rashba SC
• Due to inversion breaking, spin-singlet and triplet Cooper pairs coexist.
• We consider d-wave pairing admixed with p-wave pairing

𝐸(
𝑔

+𝑂(𝑋8)

Symmetry of 𝑿 is encoded to QGPP → e.g., effective chiral SC

AD and Y. Yanase, PRB 95, 134507 (2017).

Δ5(𝒌) → Δ5(𝒌) + Δ>(𝒌; 𝑿): Δ5 𝒌 = − 𝜓3 ∓
B?
$@

(𝑘%! − 𝑘C!), Δ> 𝒌 = −𝑖ℎ
𝑑3
𝑔𝑘D!

𝑘%𝑘C

i.e., 𝑑%A4CA-wave SC → Effectively 𝑑%A4CA + 𝑖𝑑%C-wave SC by QGPP

n Some more examples of systems e.g,. with (nearly) degenerate bands are given in our paper
• Non-unitary spin triplet states, anapole SC, …
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Summary

n SCs with and without quantum geometry are different by QGPP, which appears in 
response to external perturbation.

n QGPP is responsible for the quantum-geometric thermodynamic responses.

n QGPP can be used to engineer exotic SC states by external field and quantum 
geometry
• Topological SC, chiral SC, non-unitary SC, anapole SC, …

We have introduced QGPP to understand quantum-geometric effects in SCs

Future plan

• Model studies for e.g., nearly degenerate SCs, 𝑗 = 5
$

SCs

• Extension to transport and AC responses & Exploring phenomena induced by quantum-geometry
• Giving exceptions to conventional notions of SCs e.g., spin susceptibility of spin-triplet SCs?

AD, TK, and Y. Yanase, arXiv:2310.15558.


