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Anderson localization

𝑉(𝑥)

𝑥

𝜓𝑖(𝑥) 2

Strong disorder induces localization of electrons.

𝑑 < 2: Disorder is always relevant → Any week disorder induces localization.

𝑑 > 2: Anderson transition (metal-insulator transition) for a certain disorder strength

Interaction enables many-body localization transition in 1D.



Anderson transition

Metal
 (Extended)

Insulator
(Localized)

Anderson transition

Figure from Rodriguez, Vasquez, Slevin, & Römer, PRB 84, 134209 (2011).

Anderson transitions exhibit critical phenomena with emergent scale invariance.

--- Consequence of multifractality of the wave function

Weak disorder Strong disorder →

→ Our second topic



Quantum measurements
𝜓𝑖(𝑥) 2

Measure ො𝑥 =  𝑑𝑥 𝑥| ۧ𝑥 |𝑥ۦ
𝜓𝑖(𝑥) 2

𝑥′ → Outcome

Collapse of wave function by quantum measurement

Localization of wave function by disorder

~

Spreading of particles by unitary dynamics vs. localization of particles by measurements

→ Measurement-induced phase transitions



Measurement-induced phase transitions
For many-body quantum systems

𝜓𝐿| ۧ𝜓𝐿 =

Measure Pauli 𝑍𝑖
↑𝑖 ⊗ 𝜓𝐿−1 = 𝜓𝐿−1↑

Entanglement by unitary dynamics vs. disentanglement by local measurements

→ Entanglement transition from volume to area law

Li, Chen, & Fisher, PRB 98, 205136 (2018).
Chan, Nandkishore, Pretko, & Smith, PRB 99, 224307 (2019).
Skinner, Ruhman, & Nahum, PRX 9, 031009 (2019).
Li, Chen, & Fisher, PRB 100, 134306 (2019).



Measurement-induced phase transitions

Li, Chen, & Fisher, PRB 100, 134306 (2019).

Entanglement transition exhibits critical phenomena with emergent conformal invariance.

As for equilibrium phase transitions, symmetry also plays a prominent role.

→ Our first topic
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U(1)-symmetric monitored circuit

Haar-random unitary gate is block diagonal:

Local charge measurement with probability 𝑝

Circuit evolution conserves total U(1) charge:

|00>
|01>
|10>
|11>



Charge-sharpening transition

How fast do initially mixed charge sectors collapse into a single charge sector?

Agrawal, Zabalo, Chen, Wilson, Potter, Pixley, Gopalakrishnan, & Vasseur, PRX 12, 041002 (2022).

𝑁0: Number of trajectories collapsing into a fixed charger sector at 𝑡~𝐿, evolved from

→ Another phase transition inside the volume-law phase



Charge-sharpening transition

Monitored circuit with charged qubits and large-𝑑 neutral qudits

Barratt, Agrawal, Gopalakrishnan, Huse, Vasseur, & Potter, PRL 129, 120604 (2022).

→ Effective stat-mech model shows a BKT transition at the charge-sharpening transition.

Q1. Is there a steady-state probe in a fixed charge sector?

Q2. Are entanglement and charge-sharpening transitions separated in qubit systems?



Entanglement vs. Charge fluctuation
von Neumann entanglement entropy Bipartite charge fluctuation

Oshima and YF, PRB 107, 014308 (2023)



Entanglement vs. Charge-fluctuation transition
Bipartite mutual information

for CFT



Entanglement vs. Charge-fluctuation transition
Tripartite mutual information

for CFT

Subsystem-charge correlation function

for TLL theory



Entanglement vs. Charge-fluctuation transition
Tripartite mutual information Subsystem-charge correlation function

For 𝑁 = 𝐿/2, 𝑝𝑐 = 0.133(6) and 𝑝𝑡 = 0.121(10)

For 𝑁 = 𝐿/4, 𝑝𝑐 = 0.095(7) and 𝑝𝑡 = 0.071(4)
Agrawal et al., PRX 12, 041002 (2022).



TLL-like criticality

Close to the charge-fluctuation transition

Bipartite charge fluctuation Connected charge correlation function



BKT transition?

Ansatz: Luttinger parameter 𝐾

BKT scenario:
--- Exponent 𝑎 = 2 below the charge-fluctuation transition 𝑝 = 𝑝𝑡

--- Universal Luttinger parameter 𝐾 = 2 at 𝑝 = 𝑝𝑡



Summary (Part 1)

Q1. Is there a steady-state probe in a fixed charge sector?

Q2. Are entanglement and charge-sharpening transitions separated in qubit systems?

U(1)-symmetric monitored systems are predicted to have a charge-sharpening transition, 
in addition to an entanglement transition.

Yes: Bipartite charge fluctuation can probe it.

Yes or no: Two transitions are too close.

On dynamical quantum trees, two transitions coincide for qubit systems.

Feng, Fishchenko, Gopalakrishnan, & Ippoliti, arXiv:2405.13894.
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Multifractality at Anderson transition

Multifractal measure: Inverse participation ratio (IPR)

𝐼𝑃𝑅 𝑞 = 

𝑥

𝑥 𝜓 2𝑞

→ Asymptotic form  𝐼𝑃𝑅 𝑞 ∼ 𝐿−𝜏𝑞

𝑥 ∈ Box of the volume 𝐿𝑑

Fractal dimension 𝐷𝑞 defined by 𝜏𝑞 ≡ 𝐷𝑞(𝑞 − 1) behaves as

- Localized phase: 𝐷𝑞 = 0

- Extended (metallic) phase: 𝐷𝑞 = 𝑑

- Multifractal: 𝐷𝑞 is a nonlinear function of 𝑞



Multifractality at Anderson transition

𝐼𝑃𝑅 𝑞 = 

𝑥

𝑥 𝜓 2𝑞 ∼ 𝐿−𝜏𝑞 Anomalous dimension Δ𝑞 by 𝜏𝑞 ≡ 𝑑 𝑞 − 1 + Δ𝑞

Figures from Rodriguez, Vasquez, Slevin, & Römer, PRB 84, 134209 (2011).

Symmetry Δ𝑞 = Δ1−𝑞 is expected at Anderson transition.

Mirlin, Fyodorov, Mildenberger, & Evers, PRL 97, 046803 (2006).



Multifractality at MIPT

(2+1)D monitored free fermion circuit

Chahine & Buchhold, arXiv:2309.12391.

Monitored random circuits Sierant & Turkeshi, PRL 128, 130605 (2022).

Mutlifractality in simplest monitored system

→ Single particle

Monitored Clifford & Nonunitary free-fermion circuits

Iaconis & Chen, PRB 104, 214307 (2021).



Monitored single particle
𝜓𝑖(𝑥) 2

Measure ො𝑥 = σ𝑖 𝑖|𝑖ۧۦ𝑖|

Outcome = 𝑗

𝜓𝑖(𝑥) 2

𝜓𝑖(𝑥) 2

Measure |𝑖ۧۦ𝑖|

Global measurements: Effect of localization is too strong.

𝑖

Outcome = 1

Outcome = 0

We consider local measurements.



Quantum circuit

Particle initially placed at 𝑖 = 𝐿/2

--- 𝑈𝑗,𝑗+1 are drawn randomly or fixed.

--- Measurements 𝑀𝑗𝜇 are performed at 

every site with probability 𝑝 ∼ 𝑂(1/𝐿).

Projective measurements:

Yajima, Oshima, Mochizuki, and YF, arXiv:2406.02386.

𝜇 = 0,1: Measurement outcome



Multifractal analysis

Mean IPR: 𝐼𝑃𝑅 𝑞 ∼ 𝐿−𝜏𝑞

Inverse participation ratio:  𝐼𝑃𝑅 𝑞 = σ𝑖 𝑖 𝜓 2𝑞

Typical IPR:  𝑒ۦln 𝐼𝑃𝑅(𝑞)ۧ ∼ 𝐿−𝜏𝑞
∗

In general, 𝜏𝑞 and 𝜏𝑞
∗ are different at Anderson transitions.

Taking average ۦ⋯ ۧ over random unitaries, measurement positions, & outcomes.

Variance of the position operator: 𝑉𝑎𝑟 = 𝜓| ො𝑥2|𝜓 − 𝜓| ො𝑥|𝜓 2

𝑉𝑎𝑟 ∼ 𝐿2𝜏𝑉𝑎𝑟



Single-shot measurement model

𝜓𝑖(𝑥) 2
Measure |𝑖ۧۦ𝑖|

1/𝐿

Uniform distribution
Probability 1/𝐿

Probability 1 − 1/𝐿

1/(𝐿 − 1)
𝜏𝑞 , 𝜏𝑞

∗
𝜏𝑞

∗ = 𝑞 − 1

0
2 𝑞

1

−1

𝜏𝑞>2 = 1

𝜏𝑞 for mean IPR saturates to 1 for 𝑞 > 2.

---Rare localized trajectories affect 𝜏𝑞.



Unitary + projective measurements
Random unitary Fixed unitary

𝑝 = 0

𝑝 = 1/𝐿

Diffusive

Ballistic



Unitary + projective measurements
Random unitary Fixed unitary

---Fractal dimension 𝐷𝑞 takes nontrivial values between 0 and 1. → Multifractal?

---No scale invariance under coarse-graining in boxes of size 𝑙𝑏𝑜𝑥.



Unitary + projective measurements
Random unitary Fixed unitary

---Both 𝜏𝑞 and 𝜏𝑞
∗ are nonlinear functions of 𝑞. → Multifractal

---No symmetry for anomalous dimension Δ𝑞

Saturation



Multifractality for monitored quantum particle

Random unitary Fixed unitary

---Strong deviation from 𝑞 − 1 ---Agreement with 𝑞 − 1 for small 𝑞

Diffusive

Particle transport (diffusive or ballistic) strongly matters to multifractality.

Ballistic



Generalized measurements

Generalized measurements:

𝑒 ∈ [0,1]: Error rate

Single-shot measurement model predicts 𝜏𝑞 = 𝜏𝑞
∗ = 𝑞 − 1.

→ Absence of multifractality for any finite error rate



No-click measurements

Postselection of no-click outcomes

---Particle is never detected.

Absence of multifractality under no-click measurements

→ Only click outcomes matter to multifractality.



Classical circuit
Multifractality is not unique to quantum systems.

Particle initially placed at 𝑖 = 𝐿/2

--- 𝑇𝑗,𝑗+1 are drawn randomly or fixed.

--- Measurements are performed at 
every site with probability 𝑝 ∼ 𝑂(1/𝐿).

--- Estimate particle trajectory 𝑚(𝑡)



Classical circuit
Multifractality is not unique to quantum systems.

Particle initially placed at 𝑖 = 𝐿/2

--- 𝑇𝑗,𝑗+1 are drawn randomly or fixed.

--- Measurements are performed at 
every site with probability 𝑝 ∼ 𝑂(1/𝐿).

--- Estimate particle trajectory 𝑚(𝑡)

At each time, you are allowed to open one window.



Classical circuit
Multifractality is not unique to quantum systems.
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Classical circuit
Multifractality is not unique to quantum systems.

Particle initially placed at 𝑖 = 𝐿/2

--- 𝑇𝑗,𝑗+1 are drawn randomly or fixed.

--- Measurements are performed at 
every site with probability 𝑝 ∼ 𝑂(1/𝐿).

--- Estimate particle trajectory 𝑚(𝑡)

At each time, you are allowed to open one window.

Detected!



Local transition process + measurements

Fixed transition matrix

→ Diffusive spreading of the particle

Random transition matrix

Discrete random walk
Diffusive

=

Fixed unitary evolution

→ Ballistic spreading of the particle

Quantum walk

=



Local transition process + measurements
Fixed transition matrixRandom transition matrix

---Exponents similar to random unitary + projective measurements (diffusive) case



Multifractality for monitored particle

Diffusive cases:

-Random unitary (quantum)
-Random transition matrix (classical)
-Fixed transition matrix (classical)

Ballistics case:

-Fixed unitary (quantum)



Random walk with stochastic resetting
We consider two simplification for monitored dynamics:

- No-click measurements are irrelevant. → Keeping only click measurements

- Measurements occur at a constant rate ~1/𝐿.

This reduces to Poissonian stochastic resetting to the initial state.

Evans & Majumdar, PRL 106, 160601 (2011).
Evans, Majumdar, & Schehr, J. Phys. A 53, 193001 (2020).

𝑝 𝑥, 𝑡 ∼
1

2𝜋𝑡
𝑒−

𝑥2

2𝑡 Click



Random walk with stochastic resetting

Random walk subject to Poissonian stochastic resetting with rate 𝜆 = 1/𝐿

Analytical solutions:

Strong deviation from 𝑞 − 1 for monitored diffusive particles



Summary (Part 2)

Multifractality appears in monitored single particle subject to projective measurements.

- Particle transport (e.g., diffusive or ballistic) strongly affects multifractal scaling.

- Diffusive model reduces to stochastic resetting of a random walker.

--- Monitoring ∼ Stochastic resetting always hold?

--- Any implication for elusive free-fermion MIPT?

--- Many-particle generalizations like simple exclusion processes?
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