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Pure-state Phases of Matter

* Local Hamiltonian with gapped spectrum

* Equivalence relation: A gapped path of local Hamiltonians

* Equivalently:|y,) = [Y,) in the same phase if |Y;) = U[y,)
U: finite-depth local unitary (quasi-adiabatic continuation)

« Symmetry: constraints on local gates, [gate, G] = 0
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* Spontaneous Symmetry Breaking (SSB)
cat) = %| 1) +%| (A

* Symmetry-Protected Topological Phases
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Hasan and Kane, 2010



What is a “phase” in mixed states?

* Deformation: finite-depth local channel

e(p) = tra[U(p @ 104)0,NU™]
« A =Q); A;: associate an extra ancilla with each vertex
* |0,) is a product state on A
* U is a finite-depth unitaryon H Q A
* Preserves causality et (local) = local and locality FPiroli, Cirac 2020

* Phase: p; and p, are in the same phase if

P2 = &12(p1)
p1 = &21(p2)



Symmetry in quantum systems

e Pure states

Canonical ensemble

Uy ) = e™|)

Grand canonical
ensemble

* Mixed states p = X;; pi [ ¥
* Strong (exact) symmetry

Urp = pUy = e'p
* Weak (average) symmetry

U,pU; =p



Symmetry in quantum systems

* Pure states No charge exchange: * Mixed states = system + bath
thermal bath (traced OLIt)

* Strong (exact) symmetry

HU,|=0
.0y [gate, Uy ® 1,] = 0

* Weak (average) symmetry

Can exchange
charge: particle
bath

[gate, U, @ UZ| =0
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SSB in pure states
* 1d spin chain with Z, spin flip symmetry X =[], X;
1
- Cat state: [¢p,) = flTTT DES ARy
* Long-range order (LRO):
|[i—j|—c0
Wi |ZiZi o) > 1

« Stability: LRO is a universal property of a phase

Ul|y ) must have LRO due to the Lieb-Robinson bound



SSB in pure states

* Non-invertibility (“long-range entangled”)
AlYL) and symmetric finite-depth U, such that

U(l1) @ [¥3)) = [0)



Example: Ising Chain

- Cat state in X basis: |1 ) « 2, =t 113
Coherent superposition of all symmetric product state
Within the charge +1 sector
cp ol £X o Ny g )]
Incoherent sum of all symmetric product states
Within the charge +1 sector
tr(p0,05) =0
Strong-to-Weak SSB
Order parameter, stability, etc.



SW-SSB: Fidelity Correlator

* Conventional order parameter fails to detect SW-SSB:
tr(p0,0;) =0

* SSB in terms of similarity (overlap, distance, etc.)
(Y|Z,Z, |): similarity between [} and Z,.Z,, |)

* Intuition: similarity between

pando = 0,0, p0;0,



SW-SSB: Fidelity Correlator

* Intuition: similarity (distance) between
pando = 0,0, p0;0,

* Definition: A strongly symmetric p has SW-SSB if:

|x—y|—00

F(p,o) = tr\/\/ﬁa\/ﬁ = tr\/\/ﬁOXO;,rpOJOy\/ﬁ > 0(1)

|x—y|—00

And tr(p0,.0;) >0




Basic Properties of Fidelity

* For two states p and o,
0<F(po)<1

F(p,o) =0 plo,F(po)=1p=oc

* Data-processing inequality
F(p,0) < F(e(p), (o))

Dl PNVEIWVD - Khatri, Wilde 2021



Example: Ising Chain
* Product state after maximal dephasing
p = &([+)X+])
1
e = llaijs &y €j(0) = > (o + ZiZjpZ,Z))

*p T+ X oy =1 I}

Incoherent sum of all symmetric product states

Within the charge +1 sector
= tr(prZy) =0
F(p,ZyZypZyZ,) =1



Example: Ising Chain

* If we decompose p < I + X in local Z basis:

p = 2s(s) + X|sHs] + (s]X)
{s}: all possible bit strings in Z basis

F(0,ZxZypZxZy) = [{ZxZy)]
Mixed-state “Edward-Anderson” order parameter



Renyi-2 Correlator: SSB in the doubled space

* Operator-State map: ket O bra

ket @, \L
)\Q»

bra

* Renyi-2 Correlator:

((p10x0y @ 07 0y|p)) _ tr(p0x05p0; 0y)

{plp)) tr(p?)
* Example:p x I + X Lee, Jian, Xu 2023

=0(1)
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Properties of SW-SSB

e Stability: If p has SW-SSB, ¢ is a symmetric finite-depth channel,
= &(p) also has SW-SSB

* Symmetric finite-depth channel: can be purified to a symmetric
finite-depth local unitary
e(p) = try[U(p ® [0,){0,HNU™]
lgate of U,U;, @ 1,] =0



* Proof:

« Uhlmann Theorem: F(p,0) = max |<l/)p‘¢0'>|
|l/)p>'|¢0'>

* Foro = 0,0, p0; 0,

F(p,0) = |¢r£?£p>‘<l/)p‘0x0;l ¢,)| = 0(1)

= (P, ® 04|UTUO0;UTU| ¢, ® 04)] = 0(1)
= Klpe(p)‘Ox,Q-fl_’l qbs(p))‘ — 0(1)
* For symmetric finite-depth U,
0x = X0z @ Wy
such that (1) finite sum; (2) O; carries K charge; (3) WAi unitary
= F(e(p), 010, e(p)050)) = 0(1)



Intuition

* Data-processing inequality
o = 0,05 p0; 0,
0(1) ~ F(p,0) < F(e(p),e(0))
= F ((p), £(0:05 p0; 0,)) ~ 0(1)

* When O commutes with g, stability is straightforward.

* When ¢ is symmetric finite-depth, pushing O through the channel
still gives a local operator with the same charge.

F(e(p), 0',0'5e(p)0'30"y) ~ 0(1)



Properties of SW-SSB

* Non-invertibility:
Ap and symmetric finite-depth channel ¢,
suchthate(p @ p) = |0)0]

(Directly from stability)

* Fidelity: stable — universal

* Renyi-2: not universal
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Example: Thermal States

* Stat. Mech.:Local equivalence between canonical and grand-
canonical ensembles

* Conjecture: If a Gibbs state within a fixed charge sector has no
SSB, it must have SW-SSB

p « P,e PH
* Supporting evidence:
H is a sum of complete set of Z, symmetric commuting projector
e.g. H =L—_)O%‘,iXi
F(p,Z;Z;pZ;Z;) — 1/ cosh? B

Nonzero for any finite T



Example: decohered Ising model

* 2d Ising symmetric product state [0) =&); |+);

* Apply ZZ dephasing: € = [;s &j,€;(p) = (1 —plp + pZ;Z;jpZ;Z;
* “Ungauged” toric code under bit-flip noise

* Inequivalence between fidelity and Renyi-2

Fidelity correlator—correlator in random bond Ising model
Renyi-2—correlator in Ising model
p¥ =0.178

%
p
p, = 0.109



SSB phase

* Question: whether p; and p, can be two way connected?

p. P

) () -

0 P1 gzpz 1/2

* Question: whether local decoherence is locally recoverable?




SSB phase

* Answer: Fidelity correlator is universal
Renyi-2 correlator is not

2

p. pP

* Recovery channel: 0 p

1 g p2 1/2
Petz Recovery Map ;( “%’

Sang, Hsieh 2024

 Condition: .
0,1(A: C|B),,, ~ 0(e™'8/%) G

» ¢ ~ correlation length of the RBIM



Take home

* The behavior of SSB diagnostics in a mixed state with a strong
symmetry

Symmetry | Fo(x,y)|Tr(pO(x)O' (y))
Unbroken 0 0
SW-SSB O(1) 0
Completely Broken| O(1) O(1)
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Cluster Chainin 1d

* 1d Cluster state as a Z, XZ, SPT  Chen, Lu, Vishwanath 2013

H = _ZZZi—1X2iZ2i+1 — ZZZiX2i+1ZZi+2
[ [

75X T symmetry: X =®; Xpi, X =®; X141

Ground State |W): Z;X;11Z;,, =



Decorated domain wall construction

* |[¥) in the basis of X on even sites and Z on odd sites

: ]
T

'

ZiXiy1Ziy2 =

* A domain wall of Z9 traps a charge of Z5

+ 9



Decohering the cluster state
ce=1li&,6:) =A —p)p+pZypZy,

* Forp > 0, Z3 is strong and Z5 becomes weak

_ 1+75iX2i+1Z2i+2
.pl_l_[l 2
2
— 1 t t t t t | | t I t
¥)= 11T+ + 4Tt T i EREL
ottt A P to 1 . !
'+ T 1 +1 I+ | | I B Lo



Boundary Correlation

1+75iX2i+122i+2

.pézl‘[l :

* (ZonXons1Xonsz - Xom—1Zom) =1
* Global strong symmetry: [; X,;11p = p
° <X1X3 ---XZn—1Z2n ' ZZm X2m+1X2m+3 ---X2k+1> =1

¢ <X1X3 "'in—].ZZTL) and (ZZmX2m+1X2m+3 "'X2k+1> — O due ({0 the
weak Z5 symmetry



SRE mixed states

* SRE mixed states: p can be purified to an SRE state
& p can be prepared from |[0){0[ by a finite depth channel

* Equivalence: symmetric finite-depth channel

P2 = &12(p1)
p1 = &21(p1)

* Trivial: In the same equivalence class as symmetric product
states



Classification

* All SPT states with only weak symmetry become trivial
* Invertible states (e.g. Eg) also become trivial

Ancilla © o e e o o |0) S ly)
wap
ly) =——> o @ @ o o o |[0) e o o o o o |0)
Ancilae o o o o o |0) e 00 0 0 0ilD) g
S B 6. [0 ) e W), e e e e e e |0)
ly) ly)

* No phase factor in incoherent sum



Non-trivial ones

e Strong symmetry K and weak symmetry G
* Any SPT protected jointly by K XG or K alone are non-trivial
* |[¥) can not be connected to product state

Proof: If ¢ :symmetric finite depth channel, such that
e(|FXWP]) = [0){0]

= UlP) ® [04) = |0) ® [¥y)
= |¥,) and |¥) belong to the same SPT

* Since K acts non-trivially on A, this is impossible when |¥)
requires K symmetry



Classification

e Classification:
HY(KxG,U(1))/H*1(G,U(1))

e Decorated domain wall:
V) = z pp e |Yp)ap)
D

\ Decoherence: G becomes weak

p =) Poltn)thol ® lap)ay|
D



Summary

* Strong-to-Weak Spontaneous Symmetry Breaking
Similarity measure
Fidelity correlator: stability, non-invertibility
Renyi-2: not “universal”

* Average symmetry-protected topological phases
decorated domain wall construction



