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Classes of topological phases

■ Topological phases in nonequilibrium systems:

     Classification of phases in terms of topology of relevant operators

Class Equilibrium
(ground state)

Floquet
(periodically driven)

Non-Hermitian Discrete 
feedback

Topology of Hamiltonian unitary operator non-Hermitian 
Hamiltonian

CPTP map

closed/open closed closed open open

time continuous discrete continuous discrete

topological insulator
[König et al., Science (2007)]

topological pump
[Nakajima et al., Nat. Phys. (2016)]

topological laser
[Harari et al., Science (2018)]
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Topological phases at equilibrium

■ Equilibrium (ground-state) topological phases of free fermions

      → Topology of a Bloch Hamiltonian

■ Example: Z2 topological insulator

     → protected by time-reversal symmetry

[König et al., Science (2007)]

■ Symmetry

      Internal: time-reversal, particle-hole, chiral (sublattice)

      Crystalline: inversion, rotation, …



Topological classification of phases of matter

■ Classification of sym.-protected topological phases of free fermions 

[A. Kitaev, AIP Conf. Proc. 1134, 22 (2009)]
[A. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B 78, 195125 (2008)]

Altland-
Zirnbauer
symmetry

class

d: Spatial 
dimension

(TRS = time-reversal sym., PHS = particle-hole sym., SLS = sublattice sym.)

Z:
integer topological 

invariant

Z2: 
Z2 topological 

invariant
(0 or 1)



Topology of quantum dynamics

■ Topological classification of nonequilibrium dynamics

Example: Thouless pumping (1D system)

[D. J. Thouless, PRB 27, 6083 (1983); T. Kitagawa et al, PRB 82, 235114 (2010)]

One-site translation (unitary operator)

kx ∈ S1 U(kx) ∈ U(1)

=: U(kx)

Winding number (topological invariant)

■ Interesting consequence: the translation operator cannot be 

     generated by finite-time evolution under any local Hamiltonian!

∵) by continuous deformation with t → 0

[D. Gross et al., Commun. Math. Phys. 310, 419 (2012)]



Topological classification of unitary dynamics

■ Topological classification of unitary operators of free fermions

[S. Higashikawa, MN, and M. Ueda, Phys. Rev. Lett. 123, 066403 (2018)]

→ equivalent to equivalence classes of unitary operators

that cannot be generated by local Hamiltonians with symmetry

[X. Liu, A. B. Culver, F. Harper, and R. Roy, arXiv:2308.02728]

d: Spatial 
dimension

Altland-
Zirnbauer
symmetry

class



Non-Hermitian topology

■ Non-Hermitian topological phases

Non-Hermitian Hamiltonian → complex eigenvalues

Two types of energy gaps!

Point gap & line gap

[Kawabata et al., PRX 9, 041015 (2019)]



Non-Hermitian topology

■ Non-Hermitian topological phases

[Hatano and Nelson, PRL 77, 570 (1996); Gong et al., PRX 8, 031079 (2018)]

Example: Hatano-Nelson model (1D system)

Non-Hermitian Hamiltonian with asymmetric hopping

Winding number (topological invariant)

■ Relevant to open classical systems

      & (a limited class of) open quantum systems

Re[E]

Im[E]

Complex eigenvalues
→ winding structure
(point-gap topology)

E(k)



Topological classification of non-Hermitian systems

■ Topological classification of non-Hermitian systems

     → 38 symmetry classes due to non-Hermiticity
[Kawabata et al., PRX 9, 041015 (2019); Zhou and Lee, PRB 99, 235112 (2019)]



Motivation

■ Topological phases:

     Classification of phases in terms of topology of relevant operators

Class Equilibrium
(ground state)

Floquet
(periodically driven)

Non-Hermitian Discrete 
feedback

Topology of Hamiltonian unitary operator non-Hermitian 
Hamiltonian

CPTP map

closed/open closed closed open open

time continuous discrete continuous discrete

topological insulator
[König et al., Science (2007)]

Thouless pump
[Nakajima et al., Nat. Phys. (2016)]

Hatano-Nelson model
[Gong et al., PRX (2018)]



Motivation

■ Topological phases:

     Classification of phases in terms of topology of relevant operators

Class Equilibrium
(ground state)

Floquet
(periodically driven)

Non-Hermitian Quantum 
feedback

Topology of Hamiltonian unitary operator non-Hermitian 
Hamiltonian

quantum
channel

closed/open closed closed open open

time continuous discrete continuous discrete

Topology of quantum feedback control

→ New platform of topological phases

[MN and M. Ueda, arXiv:2403.08406]

[For topology of quantum channels in 0-dim. systems, see Gong et al., PRX 8, 031079 (2018)]
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Feedback control

■ Feedback control:

     Operation conditioned on measurement outcomes

■ Versatile applications to quantum technology

     - Suppression of quantum noise [Inoue et al., PRL 110, 163602 (2013)]

     - State preparation [Sayrin et al., Nature 477, 73 (2011)]

     - Quantum error correction [Cramer et al., Nat. Commun. 7, 11526 (2016)]



Maxwell’s demon

■Maxwell’s demon

Measurement of speed of particles

& feedback control of a window

→ decrease the entropy of a gas against the 2nd law of thermodynamics

[Figure from Wikipedia]



Maxwell’s demon

■ Experimental realization of Maxwell’s demon

[Toyabe et al., Nat. Phys. 6, 988 (2010)]

classical colloidal particle on a staircase potential

Surpassing the conventional 

2nd law by using feedback!

(information thermodynamics)

feedback controller = “demon”



Quantum feedback control

■ (Discrete) quantum feedback control

quantum channel

(CPTP map)

measurement operator (m: measurement outcome),

unitary operator conditioned on measurement outcome m

ρ: density matrix of a quantum system

probability of outcome m

measurement backaction

Step 1: measurement

Step 2: feedback operation

averaged over outcomes



Formalism

■ Vectorization of the density matrix

Non-Hermitian, non-unitary operator

on the doubled Hilbert space!

■ Single-particle quantum system on a d-dimensional lattice

quantum state at site      with internal state a

Kraus operator

■ Matrix representation of a quantum channel



Formalism (cont’d)

■ Translational symmetry (Tλ: translation operator)

momentum-space representation

“Bloch matrix”
→ characterized by a topological invariant

auxiliary creation operator
in the doubled Hilbert space



Locality of measurement and feedback

■ Dimension of the Hilbert space: D = Ncell Dloc

A quantum channel is a D2×D2 matrix!
[Dim. of X(k)] = Ncell Dloc

2 → ∞  (Ncell → ∞）

■ Assuming the locality of measurement and feedback processes

     → Many zero eigenvalues!

     → Truncation to a finite-dimensional matrix

# of unit cells

# of internal DOF

O(Ncell
2) zero eigenvalues

O(Ncell) nonzero eigenvalues



Topological feedback control

■ Model: chiral Maxwell’s demon (1D, spinless)

[MN and M. Ueda, arXiv:2403.08406; cf. K. Liu, MN, and M. Ueda, arXiv:2303.08326]

[Quantum version of Toyabe et al., Nat. Phys. 6, 988 (2010)]

■ Projective position measurement

■ Feedback: raising the potential @ site m - 1

■ Quantum channel

Chiral transport induced by feedback control!



Eigenspectrum under PBC

■ Eigenspectrum of the quantum channel

(J = 1, V = +∞, τ = 1)

eigenvalue = 1 → steady state

highly degenerate zero eigenvalue

(projective measurement

 → off-diagonal elements vanish)

[periodic boundary condition (PBC)]

Winding number

Topology of the quantum channel!

(ξPG: location of a point gap)



Non-Hermitian skin effect

■ Signature of topology under the open boundary condition (OBC)

Blue: PBC

Orange: OBC

Steady state
under OBC

Steady state under PBC

✓ Drastic change of eigenspectrum

✓ Localization of eigenmodes

→ Non-Hermitian skin effect:

Hallmark of non-Hermitian topology!

[Okuma et al, PRL (2020); Zhang et al., PRL (2020)]



Boundary condition

■ Remark on boundary conditions

Open boundary condition for a Hamiltonian

Open boundary condition for a quantum channel

Time evolution under the OBC
→ Reconstruction of matrix elements
     near the boundary!



Quantum channel vs Lindblad

■ Remark on the difference from Lindblad dynamics

Lindblad eq.

Generator (Lindbladian)

■ A quantum channel with zero eigenvalues cannot have a generator!
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Symmetry classification of topological phases

■ Symmetry classification of topological phases in static systems

[Kitaev, AIP Conf. Proc. 1134, 22 (2009)]
[Schnyder, Ryu, Furusaki, and Ludwig, Phys. Rev. B 78, 195125 (2008)]

Altland-
Zirnbauer
symmetry

class

d: Spatial 
dimension

(TRS = time-reversal sym., PHS = particle-hole sym., SLS = sublattice sym.)

Z:
integer topological 

invariant

Z2: 
Z2 topological 

invariant
(0 or 1)

■ Classification of topological feedback control?



Symmetry classification of quantum feedback control

10-fold symmetry classification of quantum feedback control

with projective measurement

[MN and M. Ueda, arXiv:2403.08406]



Bernard-LeClair symmetry classes

■ Bernard-LeClair symmetry classes of non-Hermitian matrices

[Bernard and LeClair (2001); arXiv:0110649]

P sym.

C sym.

K sym.

Q sym.

anticommutation

transpose

complex conjugation

Hermitian conjugation

■ Four types of symmetry and the combination thereof

     → 38-fold symmetry classification of non-Hermitian systems

[Kawabata et al., PRX 9, 041015 (2019); Zhou and Lee, PRB 99, 235112 (2019)]

quantum channel → non-Hermitian operator

: unitary



Symmetry of projective measurement channels

■ Symmetry with εX = -1 leads to pairs of eigenvalues

■ Symmetry with εX = -1 is NOT consistent with projective measurement

Projective measurement channel

✓ Eigenvalues are either zero or one

✓ εX = -1 implies pair eigenvalues ±1

→ no symmetry with εX = -1

right/left eigenvectors

→ (ξn, -ξn) pair

→ (ξn, -ξn
*) pair

e.g.)



Symmetry classification of quantum feedback control

■ Symmetry of feedback control with projective measurement

    Assumption: Symmetry should not depend on the operation time!

→ 10-fold symmetry classification of quantum feedback control

     with projective measurement (equivalent to AZ† classes of       )

Projective measurement channel!

■ Allowed symmetries for quantum channels

C sym.

K sym.

Q sym.

Operation
time
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Antiunitary symmetry of quantum channels

■ K symmetry

■ Every quantum channel has an antiunitary symmetry

     (modular conjugation symmetry)

antiunitary symmetry

(       : complex conjugation)

[Gong et al., PRX (2018); Kawabata et al., PRX Quantum (2023); Sa et al., PRX (2023)]

A quantum channel must preserve

Hermiticity of the density matrix

antiunitary symmetry!



Unitary symmetry of quantum channels

■ Two types of unitary symmetry of quantum channels

quantum channel

[cf. Buca and Prosen, New J. Phys. 14, 073007 (2012); Albert and Jiang, PRA 89, 022118 (2014)]

■ Weak symmetry: a conserved quantity is not necessary

→ The quantum channel can be block diagonalized by symmetry eigenvalues

■ Strong symmetry: unitary symmetry with a conserved quantity

: unitary superoperator

matrix rep.



Feedback with unitary symmetry

■ Feedback control with unitary symmetry

Example: projective position measurement that does not disturb spin

Feedback operation also conserves the magnetization

strong unitary symmetry!

■ Block diagonalization of a quantum channel by unitary symmetry

Each block does not necessarily have the modular 
conjugation symmetry! (if σ ≠ σ’)



Three groups of symmetry classes

■ Ten symmetry classes can be divided into three groups

Symmetry class with K symmetry

Symmetry class without K symmetry

Symmetry class with K symmetry

→ Basic symmetry class of quantum channels
     (Every quantum channel has antiunitary sym.
       because of Hermiticity preservation)

→ Quantum channels with
     unitary symmetry (block diagonalization)

→ Quantum channels with unitary symmetry
     and additional K symmetry



Order-reversing symmetry

■ Class AI+psH±: C symmetry, Q symmetry

Class AI (only the modular conjugation sym.)

→ Quantum channel without additional sym.

     (example: chiral Maxwell’s demon)

■ Order-reversing nature of transpose and Hermitian conjugation

The order of measurement and feedback is reversed!

How to realize feedback control with C or Q symmetry?

Transpose

Hermitian conjugation



Feedback with two-point measurement

■ Feedback control with a two-point projective measurement

projective measurement of position and spin

transition probability

C symmetry and Q symmetry

→ Symmetry between transition probabilities (e.g., reciprocity)

1st measurement

feedback unitary

2nd measurement



Feedback with two-point measurement

■ Feedback control with a two-point projective measurement

projective measurement of position and spin

1st measurement

feedback unitary

2nd measurement

transition probability

momentum-space representation



Spin winding number

■ C symmetry with                               (class AI + psH-)

reciprocity

since

Positivity of probability imposes nontrivial constraints on symmetry!

Spin winding number:
topological invariant (in 1D)



Symmetry-protected feedback control

■ Model: helical Maxwell’s demon (1D, spin 1/2, class AI + psH-)

Helical spin transport by feedback control!

1st measurement
& feedback

2nd 
measurement

Additional feedback



Symmetry-protected topological feedback control

■ Eigenspectrum of the CPTP map for helical Maxwell’s demon

Symmetry-protected topological feedback control!

Symmetry is unbroken
→ non-Hermitian skin effect

Symmetry is broken
→ no skin effect

Blue: PBC

Orange: OBC with 30 sites

Green: OBC with 20 sites

Zoom in



Experimental platforms

■ Experimental platforms?

High-precision quantum measurement & control

→ Platform of topological Maxwell’s demon

Cold atoms: quantum-gas microscopy &
single-site addressing Optical tweezer array

[Weitenberg et al., Nature 471, 319 (2011)]

[Bernien et al., Nature 551, 582 (2017)]
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Summary

■ Topology of quantum feedback control

      - Non-Hermitian topology of quantum channels!

      - 10-fold symmetry classification

■ Topological Maxwell’s demon

      - Chiral/helical transport by feedback control

      - Non-Hermitian skin effect induced by feedback control

■ Outlook:

     - Feedback-controlled line-gap topology

     - Topology and information thermodynamics

     - Classification of time evolution in open quantum systems

       (cf. Floquet → classification of unitary time evolution)

MN and M. Ueda, arXiv:2403.08406
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