Recent Developments and Challenges in Topological Phases @ Kyoto, Jun. 3, 2024

Topology of discrete quantum feedback control

Masaya Nakagawa (University of Tokyo)

Collaborator: Masahito Ueda (University of Tokyo)

MN and M. Ueda, arXiv:2403.08406

Topological phases in nonequilibrium systems:

Classification of phases in terms of topology of relevant operators

Class	Equilibrium (ground state)	Floquet (periodically driven)	Non-Hermitian
Topology of	Hamiltonian	unitary operator	non-Hermitian Hamiltonian

topological insulator [König *et al.,* Science (2007)]

Output coupler

topological laser [Harari *et al.,* Science (2018)]

topological pump [Nakajima *et al.,* Nat. Phys. (2016)]

Topological phases in nonequilibrium systems:

Classification of phases in terms of topology of relevant operators

Class	Equilibrium (ground state)	Floquet (periodically driven)	Non-Hermitian	Quantum feedback
Topology of	Hamiltonian	unitary operator	non-Hermitian Hamiltonian	quantum channel

This talk: Topology of quantum feedback control → New platform of topological phases

- 1. Introduction
- 2. Topological feedback control
- 3. Symmetry classification of quantum feedback control
- 4. Symmetry-protected topological feedback control
- 5. Summary and future perspective

1. Introduction

- 2. Topological feedback control
- 3. Symmetry classification of quantum feedback control
- 4. Symmetry-protected topological feedback control
- 5. Summary and future perspective

Equilibrium (ground-state) topological phases of free fermions

 \rightarrow Topology of a Bloch Hamiltonian

$$H = \sum_{\vec{k}} \boldsymbol{c}^{\dagger}_{\vec{k}} H(\vec{k}) \boldsymbol{c}_{\vec{k}}$$

Symmetry

Internal: time-reversal, particle-hole, chiral (sublattice) Crystalline: inversion, rotation, ...

Example: Z₂ topological insulator
→ protected by time-reversal symmetry

[König et al., Science (2007)]

Topological classification of phases of matter

Classification of sym.-protected topological phases of free fermions [A. Kitaev, AIP Conf. Proc. 1134, 22 (2009)]

[A. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B 78, 195125 (2008)]

		TRS	PHS	SLS	d=1	<i>d</i> =2	<i>d</i> =3	<i>d</i> : Spatial dimension
	A (unitary)	0	0	0	-	\mathbb{Z}	-	dimension
	AI (orthogonal)	+1	0	0	-	-	-	
	AII (symplectic)	-1	0	0	-	\mathbb{Z}_2	\mathbb{Z}_2	<i>Z</i> :
Altland-								integer topological
Zirnbauer	AIII (chiral unitary)	0	0	1	\mathbb{Z}	-	\mathbb{Z}	invariant
symmetry	BDI (chiral orthogonal)	+1	+1	1	\mathbb{Z}	-	-	invariant
synnietry	CII (chiral symplectic)	-1	-1	1	\mathbb{Z}	-	\mathbb{Z}_2	
class								Z_2 :
	D	0	+1	0	\mathbb{Z}_2	\mathbb{Z}	-	Z, topological
	С	0	-1	0	-	\mathbb{Z}	-	invariant
	DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
	CI	+1	-1	1	-	-	\mathbb{Z}	(0 or 1)
								-

(TRS = time-reversal sym., PHS = particle-hole sym., SLS = sublattice sym.)

Topological classification of nonequilibrium dynamics

Example: Thouless pumping (1D system)

[D. J. Thouless, PRB 27, 6083 (1983); T. Kitagawa *et al*, PRB 82, 235114 (2010)]

One-site translation (unitary operator)

$$U = T_x = \sum_{k_x} e^{-ik_x} |k_x\rangle \langle k_x|$$

$$=: U(k_x)$$
Winding number (topological invariant)
$$k_x \in S^1$$

$$U(k_x) \in U(1)$$

$$w = \int_{-\pi}^{\pi} \frac{dk_x}{2\pi i} U^{\dagger}(k_x) \partial_{k_x} U(k_x) = -1$$

Interesting consequence: the translation operator cannot be generated by finite-time evolution under any local Hamiltonian! [D. Gross *et al.*, Commun. Math. Phys. 310, 419 (2012)]

:) $U = e^{-iHt} \implies w = 0$ by continuous deformation with $t \rightarrow 0$

Topological classification of unitary dynamics

Topological classification of unitary operators of free fermions [S. Higashikawa, MN, and M. Ueda, Phys. Rev. Lett. 123, 066403 (2018)]

	Class	d = 0	d = 1	d = 2	d = 3	d: Spatial dimension
	А	0	\mathbb{Z}	0	\mathbb{Z}	
	AIII	\mathbb{Z}	0	\mathbb{Z}	0	
Altland-	AI	0	0	0	2ℤ	
	BDI	\mathbb{Z}	0	0	0	
Zimbauer	D	\mathbb{Z}_2	\mathbb{Z}	0	0	
symmetry	DIII	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
class	AII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
	CII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
	С	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
	CI	0	0	$2\mathbb{Z}$	0	

 \rightarrow equivalent to equivalence classes of unitary operators that cannot be generated by local Hamiltonians with symmetry [X. Liu, A. B. Culver, F. Harper, and R. Roy, arXiv:2308.02728]

Non-Hermitian topological phases

Non-Hermitian Hamiltonian \rightarrow complex eigenvalues

Non-Hermitian topological phases

Example: Hatano-Nelson model (1D system)

[Hatano and Nelson, PRL 77, 570 (1996); Gong *et al.*, PRX 8, 031079 (2018)] Non-Hermitian Hamiltonian with asymmetric hopping

$$H = \sum_{j} (J_L c_j^{\dagger} c_{j+1} + J_R c_{j+1}^{\dagger} c_j)$$
$$= \sum_{k} H(k) c_k^{\dagger} c_k$$

Winding number (topological invariant)

$$w = \int_{-\pi}^{\pi} \frac{dk}{2\pi i} H^{-1}(k) \partial_k H(k)$$

Relevant to open classical systems & (a limited class of) open quantum systems

i = 1 j = 1 j = 1 j = 1 j = 1 i =

 J_R

Topological classification of non-Hermitian systems

Topological classification of non-Hermitian systems

\rightarrow 38 symmetry classes due to non-Hermiticity

[Kawabata et al., PRX 9, 041015 (2019); Zhou and Lee, PRB 99, 235112 (2019)]

AZ class	Gap	Classifying space	d = 0	d = 1	d = 2	d = 3	AZ^{\dagger} clas	s Gap	Classifying space	d = 0	d = 1	d = 2	d = 3	SLS	AZ class	s Gap	Classifying space	d = 0	d = 1	d = 2	d = 3
A	P L	$\mathcal{C}_1 \\ \mathcal{C}_0$	$\begin{array}{c} 0 \\ \mathbb{Z} \end{array}$	\mathbb{Z}_{0}	0 Z	\mathbb{Z}_{0}	AI [†]	P L	\mathcal{R}_7 \mathcal{R}_0	0 Z	0 0	0 0	2Z 0	$\overline{S_{++}}$	BDI	P L _r L _i	$egin{array}{c} \mathcal{R}_1 \ \mathcal{R}_1 imes \mathcal{R}_1 \ \mathcal{R}_1 imes \mathcal{R}_1 \ \mathcal{R}_1 imes \mathcal{R}_1 \end{array}$	$ \begin{array}{c} \mathbb{Z}_2 \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \end{array} $	\mathbb{Z} $\mathbb{Z} \oplus \mathbb{Z}$ $\mathbb{Z} \oplus \mathbb{Z}$	0 0 0	0 0 0
AIII	P L _r L _i	$\begin{array}{c} \mathcal{C}_0 \\ \mathcal{C}_1 \\ \mathcal{C}_0 \times \mathcal{C}_0 \end{array}$	$\mathbb{Z} \oplus \mathbb{Z}$	0 ℤ 0	$ \begin{bmatrix} \mathbb{Z} \\ 0 \\ \mathbb{Z} \oplus \mathbb{Z} \end{bmatrix} $	0 ℤ 0	BDI [†]	P L _r	\mathcal{R}_0 \mathcal{R}_1 $\mathcal{R} \times \mathcal{R}$	\mathbb{Z}_{2}	$\begin{array}{c} 0 \\ \mathbb{Z} \\ 0 \end{array}$	0 0	0 0	S	DIII	$\begin{array}{c} P \\ L_r \\ L_i \end{array}$	$\mathcal{R}_3 \overset{\mathcal{R}_3}{\underset{\mathcal{C}_1}{\overset{\mathcal{R}_3}{\overset{\mathcal{R}_3}}}}$	0 0 0	$ \begin{array}{c} \mathbb{Z}_2 \\ \mathbb{Z}_2 \bigoplus_{\mathbb{Z}}^{\mathbb{Z}_2} \mathbb{Z}_2 \\ \mathbb{Z} \end{array} $	$\mathbb{Z}_2 \bigoplus_{0}^{\mathbb{Z}_2} \mathbb{Z}_2$	$\mathbb{Z} \bigoplus_{\mathbb{Z}}^{\mathbb{Z}} \mathbb{Z}$
							D^\dagger	P	$\mathcal{R}_0 \times \mathcal{R}_0$ \mathcal{R}_1	\mathbb{Z}_2	Z	0	0	\mathcal{S}_{++}	CII	P L _r L	\mathcal{R}_5 $\mathcal{R}_5 \times \mathcal{R}_5$ $\mathcal{R}_4 \times \mathcal{R}_4$	0 0 0	$\begin{array}{c} 2\mathbb{Z} \\ 2\mathbb{Z} \oplus 2\mathbb{Z} \\ 2\mathbb{Z} \oplus 2\mathbb{Z} \end{array}$	0 0 0	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
AZ class AI	Gap P	Classifying space \mathcal{R}_1	d = 0 \mathbb{Z}_2	d = 1	d = 2	d = 3		L_r L_i	$\mathcal{R}_2 \mathcal{R}_0$	\mathbb{Z}_2	\mathbb{Z}_2	0	0	S	CI	P L _r	\mathcal{R}_7 $\mathcal{R}_7 imes \mathcal{R}_7$	0	0	0 0	$2\mathbb{Z}$ $2\mathbb{Z} \oplus 2\mathbb{Z}$
BDI	L _r L _i P	$\frac{\mathcal{R}_0}{\mathcal{R}_2}$	\mathbb{Z}_2	\mathbb{Z}_2	0 Z Z	0 0 0	DIII†	P L _r Li	$\mathcal{R}_2 \\ \mathcal{R}_3 \\ \mathcal{C}_0$	\mathbb{Z}_2 0 \mathbb{Z}	\mathbb{Z}_2 \mathbb{Z}_2 0	\mathbb{Z}_2	$\begin{array}{c} 0 \\ \mathbb{Z} \\ 0 \end{array}$	\mathcal{S}_{-}	AI	L _i P	C_1 C_1	0	Z	0	Z
	L _r L _i	$\begin{array}{c} \mathcal{R}_1 \\ \mathcal{R}_2 \times \mathcal{R}_2 \end{array}$	$\mathbb{Z}_{2}^{\mathbb{Z}_{2}^{2}} \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	$\mathbb{Z} \oplus \mathbb{Z}$	0 0	AII^\dagger	P L	\mathcal{R}_3 \mathcal{R}_4	$\begin{array}{c} 0\\ 2\mathbb{Z} \end{array}$	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{2}	\mathcal{S}_{-+}	BDI	L _r L _i P	\mathcal{R}_{3} \mathcal{C}_{0}	0 0 Z	\mathbb{Z}_2	\mathbb{Z}_2	22 Z 0
D	P L	\mathcal{R}_3 \mathcal{R}_2	$\overset{0}{\mathbb{Z}_2}$	\mathbb{Z}_2 \mathbb{Z}_2	\mathbb{Z}_2	ℤ 0	CII^\dagger	P Lr	\mathcal{R}_4 \mathcal{R}_5	$2\mathbb{Z}$	$\begin{array}{c} 0\\ 2\mathbb{Z} \end{array}$	\mathbb{Z}_2	\mathbb{Z}_2 \mathbb{Z}_2	<i>S</i> .	D	L _r L _i	\mathcal{R}_0 \mathcal{R}_2	\mathbb{Z}_2	$\begin{bmatrix} 0\\ \mathbb{Z}_2\\ \mathbb{Z} \end{bmatrix}$	0 Z	0 0 7
DIII	P L _r L _i	\mathcal{R}_4 \mathcal{R}_3 \mathcal{C}_0	$2\mathbb{Z}$ 0 \mathbb{Z}	$\begin{bmatrix} 0\\ \mathbb{Z}_2\\ 0 \end{bmatrix}$	\mathbb{Z}_2 \mathbb{Z}_2 \mathbb{Z}	\mathbb{Z}_2 \mathbb{Z} 0	C^{\dagger}	L _i P	$\mathcal{R}_4 imes \mathcal{R}_4$	$2\mathbb{Z} \oplus 2\mathbb{Z}$	0 2ℤ	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$\mathbb{Z}_2 \bigoplus^{} \mathbb{Z}_2$	S_+	DIII	L P	\mathcal{R}_1 \mathcal{C}_0	\mathbb{Z}_2	Z 0	0 ℤ	0
AII	P L _r	$\mathcal{R}_5 \mathcal{R}_4$	$\begin{array}{c} 0\\ 2\mathbb{Z} \end{array}$	$2\mathbb{Z}_{0}$	$\begin{array}{c} 0 \\ \mathbb{Z}_2 \end{array}$	\mathbb{Z}_2 \mathbb{Z}_2	C	L_r L_i	\mathcal{R}_6^{-} \mathcal{R}_4^{-}	$0 \\ 2\mathbb{Z}$	0 0	$2\mathbb{Z}$ \mathbb{Z}_2	$0 \\ \mathbb{Z}_2$	c	ATT	L _r L _i	\mathcal{R}_2 \mathcal{R}_0	\mathbb{Z}_2	\mathbb{Z}_2 0	Z 0	0 0
CII	L _i P	\mathcal{R}_6 \mathcal{R}_6	0 0	0 0	2ℤ 2ℤ	0	CI^\dagger	P L _r	$rac{\mathcal{R}_6}{\mathcal{R}_7}$	0 0	0 0	$2\mathbb{Z}$	$\begin{array}{c} 0 \\ 2\mathbb{Z} \end{array}$	0_	All	L _r L _i	\mathcal{R}_3 \mathcal{R}_7	0	\mathbb{Z}_{2} 0	\mathbb{Z}_2	\mathbb{Z} $2\mathbb{Z}$
	L _r L _i	$\mathcal{R}_5 \ \mathcal{R}_6 imes \mathcal{R}_6$	0 0	$2\mathbb{Z}_{0}$	$ \begin{array}{c} 0 \\ 2\mathbb{Z} \oplus 2\mathbb{Z} \end{array} $	$\mathbb{Z}_2 \\ 0$		L	\mathcal{C}_0	\mathbb{Z}	0	Z	0	S_{-+}	CII	P L _r L _i	\mathcal{C}_0 \mathcal{R}_4 \mathcal{R}_6	\mathbb{Z} $2\mathbb{Z}$ 0	0 0 0	\mathbb{Z}_2 \mathbb{Z}_2	$\begin{bmatrix} 0\\ \mathbb{Z}_2\\ 0 \end{bmatrix}$
С	P L	\mathcal{R}_7 \mathcal{R}_6	0	0	0 2ℤ	$\frac{2\mathbb{Z}}{0}$	01.0 1.7							\mathcal{S}_+	С	P L	\mathcal{C}_1 \mathcal{R}_5	0 0	$\mathbb{Z}_{2\mathbb{Z}}$	0 0	\mathbb{Z}_{2}
CI	P L _r L _i	$egin{array}{c} \mathcal{R}_0 \ \mathcal{R}_7 \ \mathcal{C}_0 \end{array}$	\mathbb{Z} 0 \mathbb{Z}	0 0 0	0 0 Z	$\begin{array}{c} 0\\ 2\mathbb{Z}\\ 0 \end{array}$	$\frac{\text{SLS}}{\mathcal{S}_{+}}$ AZ	Class C	P C_1	d = 0	d = 1	d = 2	d = 3	S_{-+}	CI	P L _r L _i	\mathcal{C}_0 \mathcal{R}_6 \mathcal{R}_4	ℤ 0 2ℤ	0 0 0	\mathbb{Z} $2\mathbb{Z}$ \mathbb{Z}_2	$\begin{array}{c} 0\\ 0\\ \mathbb{Z}_{2} \end{array}$
									$\begin{array}{ccc} L_{r} & \mathcal{C}_{1} \times \mathcal{C}_{1} \\ L_{i} & \mathcal{C}_{1} \times \mathcal{C}_{1} \end{array}$	0	$\mathbb{Z} \oplus \mathbb{Z}$	0	$\mathbb{Z} \oplus \mathbb{Z}$	S	BDI	P La	\mathcal{R}_3 \mathcal{C}_1	0	\mathbb{Z}_2	\mathbb{Z}_2	Z Z
							S	A	$\begin{array}{ccc} P & \mathcal{C}_1 \times \mathcal{C}_1 \\ L & \mathcal{C}_1 \end{array}$	0 0	$\mathbb{Z} \oplus \mathbb{Z}$	0 0	$\mathbb{Z} \oplus \mathbb{Z}$	\mathcal{S}_{++}	DIII	L _i P	$\mathcal{R}_3 \times \mathcal{R}_3$ \mathcal{R}_5	0	$\mathbb{Z}_2 \bigoplus^{-} \mathbb{Z}_2$ $2\mathbb{Z}$	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$ 0	$\mathbb{Z} \oplus \mathbb{Z}$ \mathbb{Z}_2
							S_{-} A	III	$\begin{array}{ccc} P & \mathcal{C}_0 \times \mathcal{C}_0 \\ L_r & \mathcal{C}_0 \\ L_r & \mathcal{C}_r \end{array}$	$\mathbb{Z} \oplus \mathbb{Z}$ \mathbb{Z}	0 0	$\mathbb{Z} \oplus \mathbb{Z}$ \mathbb{Z}	0 0	ç	CII	L _r L _i	\mathcal{C}_1 \mathcal{C}_1 \mathcal{R}_2	0 0	Z	0 0	Z Z 27
									L _i L ₀		0		U	0	cn	L _r	\mathcal{C}_1	0	Z	0	Z 27.2.27

Topological phases:

Classification of phases in terms of topology of relevant operators

Class	Equilibrium (ground state)	Floquet (periodically driven)	Non-Hermitian
Topology of	Hamiltonian	unitary operator	non-Hermitian Hamiltonian

topological insulator [König *et al.,* Science (2007)]

Thouless pump [Nakajima *et al.*, Nat. Phys. (2016)]

Hatano-Nelson model [Gong *et al.*, PRX (2018)]

Topological phases:

Classification of phases in terms of topology of relevant operators

Class	Equilibrium (ground state)	Floquet (periodically driven)	Non-Hermitian	Quantum feedback
Topology of	Hamiltonian	unitary operator	non-Hermitian Hamiltonian	quantum channel

Topology of quantum feedback control

→ New platform of topological phases

[MN and M. Ueda, arXiv:2403.08406]

[For topology of quantum channels in 0-dim. systems, see Gong et al., PRX 8, 031079 (2018)]

1. Introduction

- 2. Topological feedback control
- 3. Symmetry classification of quantum feedback control
- 4. Symmetry-protected topological feedback control
- 5. Summary and future perspective

Feedback control

Feedback control:

Operation conditioned on measurement outcomes

Versatile applications to quantum technology

- Suppression of quantum noise [Inoue *et al.*, PRL 110, 163602 (2013)]
- State preparation [Sayrin et al., Nature 477, 73 (2011)]
- Quantum error correction [Cramer et al., Nat. Commun. 7, 11526 (2016)]

Maxwell's demon

[Figure from Wikipedia]

Measurement of speed of particles

& feedback control of a window

 \rightarrow decrease the entropy of a gas against the 2nd law of thermodynamics

а

Experimental realization of Maxwell's demon

b

[Toyabe et al., Nat. Phys. 6, 988 (2010)]

Surpassing the conventional 2nd law by using feedback! (information thermodynamics)

$$\Delta F - W \le k_B T I$$

classical colloidal particle on a staircase potential

feedback controller = "demon"

(Discrete) quantum feedback control

 ρ : density matrix of a quantum system

Step 1: measurement

$$\begin{split} M_m & \text{measurement operator } (m \text{: measurement outcome}), \sum_m M_m^{\dagger} M_m = I \\ p_m &= \text{Tr}[M_m^{\dagger} M_m \rho] & \text{probability of outcome } m \\ \rho &\to \rho_m = \frac{M_m \rho M_m^{\dagger}}{p_m} & \text{measurement backaction} \end{split}$$

<u>Step 2</u>: feedback operation $ho_m o U_m
ho_m U_m^\dagger$

 U_m unitary operator conditioned on measurement outcome m

$$\mathcal{E}(\rho) := \sum_{m} p_m U_m \rho_m U_m^{\dagger} = \sum_{m} U_m M_m \rho M_m^{\dagger} U_m^{\dagger} \quad \begin{array}{l} \text{quantum channel} \\ \text{(CPTP map)} \end{array}$$
averaged over outcomes

Formalism

Single-particle quantum system on a *d*-dimensional lattice

 $ert ec{i}, a
angle$ quantum state at site $ec{i}$ with internal state a

$$K_m = \sum_{\vec{i},\vec{j}} \sum_{a,b} (K_m)_{\vec{i},a;\vec{j},b} \left| \vec{i},a \right\rangle \left\langle \vec{j},b \right|, \quad \text{Kraus operator} \quad (K_m = U_m M_m)$$

Vectorization of the density matrix

$$\rho = \sum_{\vec{i},\vec{j}} \sum_{a,b} \rho_{\vec{i},a;\vec{j},b} \left| \vec{i},a \right\rangle \left\langle \vec{j},b \right| \quad \Longrightarrow \quad \left| \rho \right\rangle := \sum_{\vec{i},\vec{j}} \sum_{a,b} \rho_{\vec{i},a;\vec{j},b} \left| \vec{i},a \right\rangle \otimes \left| \vec{j},b \right\rangle$$

Matrix representation of a quantum channel

$$\mathcal{E}(\rho) = \sum_{m} K_{m} \rho K_{m}^{\dagger} \implies \tilde{\mathcal{E}} = \sum_{m} K_{m} \otimes K_{m}^{*}$$
Non-Hermitian, non-unitary operator

on the doubled Hilbert space!

Formalism (cont'd)

Translational symmetry (T_{λ} : translation operator)

$$\sum_{m} (T_{\lambda} K_m T_{\lambda}^{\dagger}) \rho (T_{\lambda} K_m T_{\lambda}^{\dagger})^{\dagger} = \sum_{m} K_m \rho K_m^{\dagger} \quad (\lambda = 1, \cdots, d)$$

→ characterized by a topological invariant

 $\tilde{c}^{\dagger}_{\vec{i},a,c,\vec{\mu}}(|\mathrm{vac}\rangle \otimes |\mathrm{vac}\rangle) = |\vec{i},a\rangle \otimes |\vec{i}+\vec{\mu},c\rangle$, auxiliary creation operator in the doubled Hilbert space

$$\tilde{c}_{\vec{k},a,c,\vec{\mu}} := \frac{1}{\sqrt{N_{\text{cell}}}} \sum_{\vec{j}} \tilde{c}_{\vec{j},a,c,\vec{\mu}} e^{-i\vec{k}\cdot\vec{R}_{\vec{j}}}$$

$$X_{a,c,\vec{\mu};b,d,\vec{\nu}}(\vec{k}) = \frac{1}{N_{\text{cell}}} \sum_{\vec{j},\vec{j}'} \sum_{m} (K_m)_{\vec{j},a;\vec{j}',b} (K_m)_{\vec{j}+\vec{\mu},c;\vec{j}'+\vec{\nu},d} e^{-i\vec{k}\cdot(\vec{R}_{\vec{j}}-\vec{R}_{\vec{j}'})}.$$

Locality of measurement and feedback

Dimension of the Hilbert space: $D = N_{cell} D_{loc}$ # of internal DOF # of unit cells

 $\tilde{\mathcal{E}} = \sum_{\vec{k}} \tilde{c}_{\vec{k}}^{\dagger} X(\vec{k}) \tilde{c}_{\vec{k}} \quad \begin{array}{l} \text{A quantum channel is a } D^2 \times D^2 \text{ matrix!} \\ \text{[Dim. of } X(k)\text{]} = N_{\text{cell}} D_{\text{loc}}^2 \rightarrow \infty \ (N_{\text{cell}} \rightarrow \infty) \end{array}$

Assuming the locality of measurement and feedback processes

 \rightarrow Many zero eigenvalues! $\hat{K}_m | \vec{i}, a \rangle \langle \vec{j}, b | \hat{K}_m^{\dagger} = 0 \text{ for } | \vec{i} - \vec{j} | > \ell$,

 \rightarrow Truncation to a finite-dimensional matrix

Model: chiral Maxwell's demon (1D, spinless) [MN and M. Ueda, arXiv:2403.08406; cf. K. Liu, MN, and M. Ueda, arXiv:2303.08326] [Quantum version of Toyabe *et al.*, Nat. Phys. 6, 988 (2010)]

Projective position measurement $M_m = \ket{m}ig\langle m
ight|$

Feedback: raising the potential @ site m - 1

Quantum channel

$$\mathcal{E}(\rho) = \sum_{m=1}^{L} U_m M_m \rho M_m^{\dagger} U_m^{\dagger}, \quad U_m = \exp[-iH_m \tau]$$

Chiral transport induced by feedback control!

Eigenspectrum of the quantum channel [periodic boundary condition (PBC)]

Non-Hermitian skin effect

Signature of topology under the open boundary condition (OBC)

Remark on boundary conditions

Open boundary condition for a Hamiltonian

$$H_{\rm OBC} = H_{\rm PBC} - H_{\rm boundary}$$

Open boundary condition for a quantum channel


```
H_{\text{boundary}}
```

$$\mathcal{E}_{\text{OBC}} \neq \mathcal{E}_{\text{PBC}} - \mathcal{E}_{\text{boundary}}$$

$$\mathcal{E}_{\rm OBC}(\rho) = \sum_{m} e^{-i\tau H_{m,\rm OBC}} M_m \rho M_m^{\dagger} e^{i\tau H_{m,\rm OBC}}$$

Time evolution under the OBC

→ Reconstruction of matrix elements near the boundary! Remark on the difference from Lindblad dynamics

$$\frac{d\rho}{dt} = \mathcal{L}(\rho) = -i[H,\rho] + \sum_{\alpha} (L_{\alpha}\rho L_{\alpha}^{\dagger} - \frac{1}{2}\{L_{\alpha}^{\dagger}L_{\alpha},\rho\}) \quad \text{Lindblad eq.}$$
Generator (Lindbladian)^{\alpha}

A quantum channel with zero eigenvalues cannot have a generator!

$$\mathcal{E} \neq e^{\mathcal{L}t}$$

- 1. Introduction
- 2. Topological feedback control
- 3. Symmetry classification of quantum feedback control
- 4. Symmetry-protected topological feedback control
- 5. Summary and future perspective

Symmetry classification of topological phases

Classification of topological feedback control?

Symmetry classification of topological phases in <u>static</u> systems
 [Kitaev, AIP Conf. Proc. 1134, 22 (2009)]
 [Schnyder, Ryu, Furusaki, and Ludwig, Phys. Rev. B 78, 195125 (2008)]

								d: Spatial
		TRS	PHS	SLS	d=1	<i>d</i> =2	<i>d</i> =3	dimension
	A (unitary)	0	0	0	-	Z	-	
	AI (orthogonal)	+1	0	0	-	-	-	_
	AII (symplectic)	-1	0	0	-	\mathbb{Z}_2	\mathbb{Z}_2	Ζ:
Altland-								integer topological
Zirnbauer	AIII (chiral unitary)	0	0	1	\mathbb{Z}	-	\mathbb{Z}	invariant
symmetry	BDI (chiral orthogonal)	+1	+1	1	Z	-	-	
class	CII (chiral symplectic)	-1	-1	1	Z	-	\mathbb{Z}_2	Z ₂ :
	D	0	+1	0	\mathbb{Z}_2	Z	-	Z_2 topological
	С	0	-1	0	-	\mathbb{Z}	-	invariant
	DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	(0 or 1)
	CI	+1	-1	1	-	-	Z	

(TRS = time-reversal sym., PHS = particle-hole sym., SLS = sublattice sym.)

Symmetry classification of quantum feedback control

10-fold symmetry classification of quantum feedback control with projective measurement

[MN and M. Ueda, arXiv:2403.08406]

Class	C	K	Q	Example of conditions
А	0	0	0	US
psH (AIII)	0	0	1	US, 2PM, and modified reciprocity
AI^{\dagger}	+1	0	0	US, 2PM, and reciprocity
$\rm AI+psH_+~(BDI^\dagger)$	+1	+1	1	2PM and reciprocity
AI (D^{\dagger})	0	+1	0	No symmetry or particle-hole symmetry
$AI + psH_{-} (DIII^{\dagger})$	-1	+1	1	2PM, reciprocity, and additional FB
$\operatorname{AII}^{\dagger}$	-1	0	0	US, 2PM, reciprocity, and additional FB
$\rm AII+psH_+~(CII^\dagger)$	-1	-1	1	US, $2PM$, AUS , reciprocity, and additional FB
AII (C^{\dagger})	0	-1	0	US and AUS_
$\rm AII+psH_{-}~(CI^{\dagger})$	+1	-1	1	US, $2PM$, AUS_{-} , and reciprocity

Bernard-LeClair symmetry classes of non-Hermitian matrices [Bernard and LeClair (2001); arXiv:0110649]

$\tilde{\mathcal{E}} = \sum_m K_m \otimes K_m^*$ quantum channel $ o$ non-Hermitian operator									
P sym. $ ilde{\mathcal{V}}_P ilde{\mathcal{E}} ilde{\mathcal{V}}_P^{-1}$	$=$ $ \tilde{\mathcal{E}}$,	anticommutation	$ ilde{\mathcal{V}}_X$: unitary						
C sym. $ ilde{\mathcal{V}}_C ilde{\mathcal{E}}^T ilde{\mathcal{V}}_C^{-1}$	$= \frac{\epsilon_C \tilde{\mathcal{E}}}{\epsilon_C}$	transpose	$\epsilon_X = \pm 1$ $(X - C K O)$						
K sym. $ ilde{\mathcal{V}}_K ilde{\mathcal{E}}^* ilde{\mathcal{V}}_K^{-1}$	$= \epsilon_K \tilde{\mathcal{E}},$	complex conjugation	$\tilde{\mathcal{V}}_{\mathbf{x}}^* \tilde{\mathcal{V}}_{\mathbf{x}} = \pm 1$						
Q sym. $ ilde{\mathcal{V}}_Q ilde{\mathcal{E}}^\dagger ilde{\mathcal{V}}_Q^{-1}$	$= \frac{\epsilon_Q \tilde{\mathcal{E}}}{\epsilon_Q}$	Hermitian conjugation	(X = C, K)						

- Four types of symmetry and the combination thereof
 - → 38-fold symmetry classification of non-Hermitian systems [Kawabata *et al.*, PRX 9, 041015 (2019); Zhou and Lee, PRB 99, 235112 (2019)]

Symmetry with ε_{χ} = -1 leads to pairs of eigenvalues

Symmetry with ε_{χ} = -1 is **NOT** consistent with projective measurement

Projective measurement channel

$$\mathcal{E}_{\rm proj}(\rho) = \sum_m P_m \rho P_m,$$

✓ Eigenvalues are either zero or one ✓ $\varepsilon_X = -1$ implies pair eigenvalues ±1 → no symmetry with $\varepsilon_X = -1$

Symmetry classification of quantum feedback control

Symmetry of feedback control with projective measurement <u>Assumption</u>: Symmetry should not depend on the operation time!

Allowed symmetries for quantum channels

C sym.
$$\tilde{\mathcal{V}}_C \tilde{\mathcal{E}}^T \tilde{\mathcal{V}}_C^{-1} = \tilde{\mathcal{E}}, \ \tilde{\mathcal{V}}_C^* \tilde{\mathcal{V}}_C = \pm 1$$

K sym.
$$\tilde{\mathcal{V}}_K \tilde{\mathcal{E}}^* \tilde{\mathcal{V}}_K^{-1} = \tilde{\mathcal{E}}, \quad \tilde{\mathcal{V}}_K^* \tilde{\mathcal{V}}_K = \pm 1$$

Q sym. $\tilde{\mathcal{V}}_Q \tilde{\mathcal{E}}^\dagger \tilde{\mathcal{V}}_Q^{-1} = \tilde{\mathcal{E}}, \quad \tilde{\mathcal{V}}_Q^2 = 1$

Class	C	K	Q
А	0	0	0
psH (AIII)	0	0	1
AI^\dagger	+1	0	0
$AI+psH_+ (BDI^{\dagger})$	+1	+1	1
AI (D^{\dagger})	0	+1	0
$AI + psH_{-}$ (DIII [†])	-1	+1	1
AII^\dagger	-1	0	0
$AII+psH_+ (CII^{\dagger})$	-1	-1	1
AII (C^{\dagger})	0	-1	0
$AII+psH_{-}$ (CI^{\dagger})	+1	-1	1

→ 10-fold symmetry classification of quantum feedback control with projective measurement (equivalent to AZ⁺ classes of $i\tilde{\mathcal{E}}$)

- 1. Introduction
- 2. Topological feedback control
- 3. Symmetry classification of quantum feedback control
- 4. Symmetry-protected topological feedback control
- 5. Summary and future perspective

Antiunitary symmetry of quantum channels

K symmetry

$$\tilde{\mathcal{V}}_K \tilde{\mathcal{E}}^* \tilde{\mathcal{V}}_K^{-1} = \tilde{\mathcal{E}}$$

$$\langle \stackrel{\sim}{\longrightarrow} (\tilde{\mathcal{V}}_K \mathcal{K}) \tilde{\mathcal{E}} (\tilde{\mathcal{V}}_K \mathcal{K})^{-1} = \tilde{\mathcal{E}}$$
 antiunitary symmetry
(\mathcal{K} : complex conjugation)

Every quantum channel has an antiunitary symmetry (modular conjugation symmetry)

[Gong et al., PRX (2018); Kawabata et al., PRX Quantum (2023); Sa et al., PRX (2023)]

$$[\mathcal{E}(\rho)]^{\dagger} = \mathcal{E}(\rho^{\dagger})$$

A quantum channel must preserve Hermiticity of the density matrix

$$\iff \mathcal{JEJ}^{-1} = \mathcal{E}, \ \mathcal{J}(\rho) = \rho^{\dagger}$$

antiunitary symmetry!

$$(\mathcal{J}^2 = 1)$$

Two types of unitary symmetry of quantum channels

[cf. Buca and Prosen, New J. Phys. 14, 073007 (2012); Albert and Jiang, PRA 89, 022118 (2014)]

$$\begin{aligned} \mathcal{E}(\rho) &= \sum_m K_m \rho K_m^\dagger \quad \mbox{$\stackrel{\frown$}{m}$} \quad \tilde{\mathcal{E}} &= \sum_m K_m \otimes K_m^* & \mbox{matrix rep.} \\ & \mbox{quantum channel} & & (K_m = U_m M_m) \end{aligned}$$

Weak symmetry: a conserved quantity is not necessary

$$\mathcal{UEU}^{-1}=\mathcal{E},~~\mathcal{U}~$$
 : unitary superoperator

→ The quantum channel can be block diagonalized by symmetry eigenvalues

Strong symmetry: unitary symmetry with a conserved quantity

$$\Box \hspace{-0.5cm} \begin{array}{c} \Gamma \\ \end{array} \operatorname{Tr}[A\mathcal{E}(\rho)] = \sum_{m} \operatorname{Tr}[K_{m}^{\dagger}AK_{m}\rho] = \operatorname{Tr}[A\rho]$$

Feedback control with unitary symmetry

Example: projective position measurement that does not disturb spin

$$M_m = |m, \uparrow\rangle \langle m, \uparrow| + |m, \downarrow\rangle \langle m, \downarrow| \qquad \Box \rangle \qquad [M_m, S^z] = 0$$

$$[U_m, S^z] = 0 \quad \text{Feedback operation also conserves the magnetization}$$

$$\Box \rangle \quad [K_m, S^z] = 0 \quad (K_m = U_m M_m) \quad \text{strong unitary symmetry!}$$
Block diagonalization of a quantum channel by unitary symmetry
$$\mathcal{E} = \mathcal{E}_{\uparrow\uparrow} + \mathcal{E}_{\downarrow\uparrow} + \mathcal{E}_{\downarrow\downarrow} + \mathcal{E}_{\downarrow\downarrow},$$

$$\mathcal{E}_{\sigma\sigma'}(\rho) = \sum_{m} U_m M_{m,\sigma} \rho M_{m,\sigma'}^{\dagger} U_m^{\dagger}, \quad M_{m,\sigma} = |m,\sigma\rangle \langle m,\sigma|$$

 $\mathcal{J}\mathcal{E}_{\sigma\sigma'}\mathcal{J}^{-1} = \mathcal{E}_{\sigma'\sigma}$

Each block does not necessarily have the modular conjugation symmetry! (if $\sigma \neq \sigma'$)

Ten symmetry classes can be divided into three groups

Class	C	K	Q
$AI+psH_+$	+1	+1	1
AI	0	+1	0
$AI + psH_{-}$	-1	+1	1

$$(\tilde{\mathcal{V}}_K^* \tilde{\mathcal{V}}_K = +1)$$

→ Basic symmetry class of quantum channels (Every quantum channel has antiunitary sym. because of Hermiticity preservation)

Class	C	K	Q
А	0	0	0
psH	0	0	1
AI^\dagger	+1	0	0
$\operatorname{AII}^{\dagger}$	-1	0	0

Class	C	K	Q
$AII+psH_+$	-1	-1	1
AII	0	-1	0
$AII+psH_{-}$	+1	-1	1

Symmetry class without K symmetry

→ Quantum channels with unitary symmetry (block diagonalization)

Symmetry class with K symmetry

$$(\tilde{\mathcal{V}}_K^* \tilde{\mathcal{V}}_K = -1)$$

→ Quantum channels with unitary symmetry and additional K symmetry

Order-reversing symmetry

Class	C	K	Q
$AI+psH_+$	+1	+1	1
AI	0	+1	0
$AI+psH_{-}$	-1	+1	1

 Class AI (only the modular conjugation sym.)
 → Quantum channel without additional sym. (example: chiral Maxwell's demon)

Class AI+psH $_{\pm}$: C symmetry, Q symmetry

- $ilde{\mathcal{V}}_C ilde{\mathcal{E}}^T ilde{\mathcal{V}}_C^{-1} = ilde{\mathcal{E}}$ Transpose
- $ilde{\mathcal{V}}_Q ilde{\mathcal{E}}^\dagger ilde{\mathcal{V}}_Q^{-1} = ilde{\mathcal{E}}$ Hermitian conjugation

Order-reversing nature of transpose and Hermitian conjugation

$$\tilde{\mathcal{E}}^T = \sum_m K_m^T \otimes K_m^\dagger, \quad K_m^T = (U_m M_m)^T = M_m^T U_m^T$$

The order of measurement and feedback is reversed! How to realize feedback control with C or Q symmetry? Feedback control with a two-point projective measurement

feedback unitary

$$\mathcal{E}(\rho) = \sum_{m_1,m_2} M_{m_2} U_{m_1} M_{m_1} \rho M_{m_1}^{\dagger} U_{m_1}^{\dagger} M_{m_2}^{\dagger} = \sum_{m_1,m_2} K_{m_1,m_2} \rho K_{m_1,m_2}^{\dagger} \rho K_{m_1,m_2}^{\dagger}$$
2nd measurement 1st measurement

 $M_m = M_{ec{j},\sigma} = |ec{j},\sigma
angle \,\langle ec{j},\sigma|$ projective measurement of position and spin

C symmetry and Q symmetry

→ Symmetry between transition probabilities (e.g., reciprocity)

Feedback control with a two-point projective measurement

feedback unitary

$$\mathcal{E}(\rho) = \sum_{m_1, m_2} M_{m_2} U_{m_1} M_{m_1} \rho M_{m_1}^{\dagger} U_{m_1}^{\dagger} M_{m_2}^{\dagger} = \sum_{m_1, m_2} K_{m_1, m_2} \rho K_{m_1, m_2}^{\dagger}$$
2nd measurement 1st measurement

$$M_m = M_{\vec{j},\sigma} = \left| \vec{j}, \sigma \right\rangle \left\langle \vec{j}, \sigma \right\rangle$$

 $\implies \tilde{\mathcal{E}} = \sum \tilde{c}_{\vec{k}}^{\dagger} X(\vec{k}) \tilde{c}_{\vec{k}}$

projective measurement of position and spin

momentum-space representation

$$X(\vec{k}) = \begin{pmatrix} \tilde{X}(\vec{k}) & O \\ O & O \end{pmatrix}, \quad \tilde{X}(\vec{k}) = \begin{pmatrix} \xi_{\uparrow\uparrow}(\vec{k}) & \xi_{\uparrow\downarrow}(\vec{k}) \\ \xi_{\downarrow\uparrow}(\vec{k}) & \xi_{\downarrow\downarrow}(\vec{k}) \end{pmatrix},$$
$$\xi_{\sigma\sigma'}(\vec{k}) = \frac{1}{N_{\text{cell}}} \sum_{\vec{j}_1, \vec{j}_2} p(\vec{j}_2, \sigma | \vec{j}_1, \sigma') e^{-i\vec{k} \cdot (\vec{R}_{\vec{j}_2} - \vec{R}_{\vec{j}_1})}.$$
transition probability

Spin winding number

$$\begin{split} \blacksquare & \mathsf{C} \text{ symmetry with } \tilde{\mathcal{V}}_C^* \tilde{\mathcal{V}}_C = -1 \text{ (class Al + psH_)} \\ & (-i\sigma_y) \tilde{X}^T (-\vec{k}) (-i\sigma_y)^{-1} = \tilde{X}(\vec{k}), \\ & \longleftrightarrow \quad \xi_{\uparrow\uparrow}(-\vec{k}) = \xi_{\downarrow\downarrow}(\vec{k}), \ \xi_{\uparrow\downarrow}(-\vec{k}) = - \ \xi_{\uparrow\downarrow}(\vec{k}), \ \xi_{\downarrow\uparrow}(-\vec{k}) = - \ \xi_{\downarrow\uparrow}(\vec{k}) \\ & \longleftrightarrow \quad p(\vec{j}_2,\uparrow |\vec{j}_1,\uparrow) = p(\vec{j}_1,\downarrow |\vec{j}_2,\downarrow), \quad \text{reciprocity} \\ & p(\vec{j}_2,\uparrow |\vec{j}_1,\downarrow) = p(\vec{j}_2,\downarrow |\vec{j}_1,\uparrow) = 0 \quad \text{since} \quad p(\vec{j}_2,\sigma|\vec{j}_1,\sigma') \ge 0 \end{split}$$

Positivity of probability imposes nontrivial constraints on symmetry!

$$\begin{split} \tilde{X}(\vec{k}) &= \begin{pmatrix} \xi_{\uparrow\uparrow}(\vec{k}) & 0\\ 0 & \xi_{\downarrow\downarrow}(\vec{k}) \end{pmatrix} \\ & \swarrow w_{\rm spin} = \frac{1}{2}(w_{\uparrow} - w_{\downarrow}) & \begin{array}{c} \text{Spin winding number:}\\ \text{topological invariant (in 1D)} \\ &= \frac{1}{2} \int_{-\pi}^{\pi} \frac{dk}{2\pi i} (\partial_k \ln[\xi_{\uparrow\uparrow}(k) - \xi_{\rm PG}] - \partial_k \ln[\xi_{\downarrow\downarrow}(k) - \xi_{\rm PG}]) \end{split}$$

Symmetry-protected feedback control

Model: helical Maxwell's demon (1D, spin 1/2, class AI + psH_)

Helical spin transport by feedback control!

Symmetry-protected topological feedback control

Symmetry-protected topological feedback control!

Experimental platforms

Experimental platforms?

a

Cold atoms: quantum-gas microscopy & single-site addressing

а 1.013 nm 420 nm Addressing laser beam Vicrowave 6.8 GHz (1) Load $a_{lat} = 532 \text{ nm}$ (2) Arrange Atoms in two-dimensional optical lattice U(t)(3) Evolve (4) Detect

[Weitenberg *et al.*, Nature 471, 319 (2011)]

[Bernien *et al.*, Nature 551, 582 (2017)]

Optical tweezer array

High-precision quantum measurement & control → Platform of topological Maxwell's demon

- 1. Introduction
- 2. Topological feedback control
- 3. Symmetry classification of quantum feedback control
- 4. Symmetry-protected topological feedback control
- 5. Summary and future perspective

Summary

Topology of quantum feedback control

- Non-Hermitian topology of quantum channels!
- 10-fold symmetry classification
- Topological Maxwell's demon
 - Chiral/helical transport by feedback control
 - Non-Hermitian skin effect induced by feedback control
- Outlook:
 - Feedback-controlled line-gap topology
 - Topology and information thermodynamics
 - Classification of time evolution in open quantum systems (cf. Floquet \rightarrow classification of unitary time evolution)

MN and M. Ueda, arXiv:2403.08406