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• The classification of topological phases is enriched by symmetry (states acquire 
quantized symmetry-protected topological invariants) 

• How many different phases of matter exist for a given

symmetry?  

• How do we determine the phase of a particular numerical model or experimental 
system (i.e. how to actually measure all the topological invariants)?

• We are interested in crystalline symmetries- full answer still not known! 



Hofstadter (1976); Harper (1955)

TKNN (1982); Osadchy, Avron (2001)

Xie et al, Nature 2021



• In free fermion crystalline systems, the C&C problems have been answered to a 
large extent (classify representations of bands in momentum space) 

• We are interested in interacting systems where band theory is no longer valid

Shiozaki-Sato, K-theory, 2014
Kruthoff et al, Band structure combinatorics, 2017
Watanabe, Po, Vishwanath, Symmetry indicators, 2017
Bradlyn, Cano, Bernevig et al, Topological quantum
chemistry, 2020
Shiozaki-Ono, AHSS, 2023
…



Our focus: Chern insulators and fractional Chern insulators on square lattice

But more generally:

• Topological crystalline insulator (+ interacting versions)
• 2d SPT/invertible states with above symmetry
• Quantum spin liquids
• Can generalize to the space groups p1, p2, p3, p6



• Two broad approaches for classification:

1. Construct exactly solvable ground state wave functions in real space 

2. Topological quantum field theory (TQFT)

• These approaches have addressed the classification problem for our symmetry choice

(today: what do the predicted invariants mean and how do we measure them?)

Huang, Song, Huang, Hermele, PRB 2017
Song, Fang, Qi, Nature 2020
Zhang, Qi, Gu, PRR 2022
…



Take home message

Nontrivial invariants should exist in current experimental setups, e.g. zero-field FCI at fractional filling

Leading term with universal part 
+ subleading terms

There are many new crystalline invariants in both ordinary and fractional 
Chern insulators

Can be fully characterized by partial rotations (+TQFT/CFT/real space 
ideas)



Results for Chern insulators (Hofstadter model)



Results for fractional Chern insulators

• Hofstadter ground states → projected parton wave functions 
for ½ Laughlin topological order

• Predict crystalline invariants + partial rotation results using 
TQFT/CFT 

• Verify partial rotation prediction numerically (Monte Carlo) 

• We can extract the full set of crystalline invariants in good 
agreement with theory



• Part 1: Complete characterization of Chern insulators through partial rotations
• Real space/TQFT classification

• Partial rotation prediction from CFT

• Numerics (Hofstadter model)

• Part 2: Fractional Chern insulator (1/2 Laughlin state)
• Formal theory (Chern-Simons theory + real-space)

• Parton construction of ½ Laughlin state

• Partial rotation prediction

• Numerical details



Ryohei KobayashiYuxuan Zhang Maissam Barkeshli

Part 1
Zhang, NM, Kobayashi, Barkeshli, PRL (2023)



• Consider (2+1)D invertible states (unique ground state on torus, no anyons),

• Single rotation center: assume orbitals can be exponentially localized at center



Multiple rotation centers: need to assume that all orbitals can be exponentially localized near high-symmetry points

Zhang, Qi, Gu, PRR 2022



Manjunath, Calvera, Barkeshli, PRB 2024

This construction fully captures the rotation invariants but misses two integer invariants

1. Chern number 𝐶 (electrical Hall conductance)

2. Chiral central charge 𝑐− (= 𝐶 for free fermions but not necessarily so in general)
Sets thermal Hall conductance

3. For general flux, the filling relation is modified:

Limitation: Construction applies to ideal wave functions; does not suggest order 
parameters/experimental measures

To resolve this, appeal to TQFT!



TQFT approach (internal symmetries):

e.g. 𝑈(1)𝑓 charge conservation: define background gauge field 𝐴

Flux of 𝐴 ~ d𝐴 (magnetic flux)

In general: define a background 𝐺 gauge field on a triangulated manifold

Find all possible ‘topological’ effective actions
(partition function on closed manifold is invariant under retriangulations)

Bosonic SPTs -> Group cohomology classes
Invertible fermionic states: more complicated 
(Cobordism/ G-crossed BTC theory) 

Barkeshli, Bonderson, Cheng, Wang, PRB (2019)
Kapustin, Thorngren, Turzillo, Wang (2015)
Barkeshli, Chen, Hsin, NM, PRB (2022)
Aasen, Bonderson, Knapp (2021)

Dijkgraaf, Witten (1990)
Chen, Liu, Gu, Wen, PRB (2013)



Extension to crystalline symmetries (Crystalline equivalence principle):

Classification/response for spatial symmetry G

Classification/response for effective internal symmetry 𝐺𝑒𝑓𝑓

For bosons 𝐺𝑒𝑓𝑓 ≅ 𝐺

For fermions: symmetry 𝐺𝑓 has a subgroup of fermion parity, ℤ2
𝑓

; define 𝐺𝑏 = 𝐺𝑓/ℤ2
𝑓

Operators which act trivially on bosons can act in two ways on fermions (group extension)

𝐺𝑏
𝑒𝑓𝑓

≅ 𝐺𝑏 but

This is a conjecture, no full proof but many explicit checks (match to real-space constructions)

Thorngren, Else, PRX (2018)
Debray (2021)
NM, Calvera, Barkeshli, PRB (2022)
…



General effective action:

• If we interpret 𝜔 as a rotation gauge field, 
𝑑𝜔 = 𝜋/2 represents a 𝜋/2 disclination

• Relation to real-space data: 

• The second term describes quantized charge 
bound to disclinations



Zhang, NM, Nambiar, Barkeshli, PRL (2022)

Consistency check: Landau level limit

Brief digression: Quantized charge at lattice defects



States with fixed 𝐶, 𝜅 can have different invariants



• Measuring shift at different points gives at most

(we have missed the 𝑙𝑜 invariant)

• For complete characterization, need a different approach!

• Real-space construction suggests that we should measure a ‘localized’ angular momentum; can we 
do a localized, ‘partial’ rotation?



Shiozaki, Shapourian, Ryu, PRB (2017)
Zhang, NM, Kobayashi, Barkeshli (2023)



After fixing 𝐶: Θ𝑜
+ gives a ℤ2 invariant for o= 𝛼, 𝛽

Why ℤ2 and not ℤ4? 



After fixing 𝐶:
Θ𝑜

− gives a ℤ8, ℤ8, ℤ4 invariant for o= 𝛼, 𝛽, 𝛾

No jumps because extra orbit contributes l=0



Shiozaki, Shapourian, Ryu, PRB (2017)
Zhang, NM, Kobayashi, Barkeshli (2023)

Li, Haldane, PRL (2008)
Qi, Katsura, Ludwig, PRL (2012)
…CFT calculation:

S,T matrices of CFT are directly related to the field theory!

We know the quantization of field theory coefficients; can prove the empirical formulas for Θ𝑜
±



From a single wave function
No defects necessary



Ryohei Kobayashi Yuxuan Zhang Maissam Barkeshli

Part 2
Zhang, NM, Kobayashi, Barkeshli, 2405.17431 (2024)



If a quantized invariant exists for Chern insulators, a ‘fractional’ version should exist for FCI!
Is this true for the partial rotation invariant?

We work with the simplest topological order: 𝑈(1)2 (anyons: 1, a = semion; a x a = 1)

Ordinary CI case: 

FCI case: 

Fractional charge/angular momentum of semion: 



Real space construction: 

1. For symmetry fractionalization: start with a state having some fixed 𝑣 but trivial crystalline sym frac
Then decorate high-symmetry points with anyons to get a new state

2. For the SPT indices, decorate integer charges at high symmetry points as before

Zhang, NM, Kobayashi, Barkeshli, 2405.17431 (2024)



Parton wave functions for ½ state:
1. Decompose boson into fermionic partons, 𝑏 =  𝑓1𝑓2

2. Each parton flavor is in a CI ground state, e.g. from Hofstadter model
3. Projection: 

Determining the invariants of the parton ground state:

Derivation:

1. Each parton state has its own K-matrix theory 𝑎(1)
𝐼 , 𝑎(2)

𝐼

2. Parton decomposition has U(1) redundancy with gauge field 𝛼
3. Integrate out 𝛼 + other dynamical gauge fields



Predictions for partial rotations about 𝛼, 𝛽 from CFT (to leading order):

Note:
1. Quantization (mod 2 v/s mod 4) already gives 

𝑠, 𝑣
2. Formulas greatly generalize (bosonic + 

fermionic TO, other rotation symmetries)

Zhang, NM, Kobayashi, Barkeshli, 2405.17431 (2024)



a-d) l=0
5 × 106 Metropolis steps = 1 point
Color = flux value
b) Average over 20 batches
𝜋 phase ambiguity for different flux 
implies 𝑠 = 1 (correct)

e-h) l=1
No phase ambiguity, implies s + v = 0 
(correct)

 

2405.17431



Consider FCI with ½ Laughlin TO at zero magnetic field:

Fractional filling implies both 𝑚, 𝑣 are nontrivial; implies one of the 
𝑠𝑜 are nontrivial! Similar argument for other fractional fillings

Outlook: Can we measure these in an experiment?

Summary: There are many new 
crystalline invariants in integer 
and fractional Chern 
insulators!

Ok, but do these new invariants 
actually matter for experiments?
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