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Outline

• Review of 2d case
- Noncommutative coordinates (single-particle)

- GMP algebra (many-body)

- Bulk-boundary correspondence

• Higher dimensional generalization (mainly 4d)
- Higher dimensional “currrent algebra”
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Topological band insulators

• Occupied bands are characterized by the Berry connection Aab
µ (k)

(curvature F ab
µν(k)) and topological invariants, e.g., Chern number

• Non-trivial boundary states; bulk-boundary correspondence

• Density operator ρ̂(q) projected to the occupied bands below the band
gap.
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Coordinate algebra in 2d

• Physics confined within the lowest Landau level (LLL):

• Position operators (in the first quantization) projected on to LLL (= Xi)
do not commute

[X1, X2] = −iℓ2
0,

where ℓ0 =
√

1/eB is the magnetic length.
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Coordinate algebra in 2d

• For functions f(x1, x2) and their projected counterparts, f(X1, X2),

[f(X1, X2), g(X1, X2)] = iℓ2
0{{f(X1, X2), g(X1, X2)}},

where {{· · · }} is the Moyal bracket

{{f1, f2}} := iℓ−2
0

∑∞
n=1

(−)n

n! (∂n
z f1∂

n
z̄ f2 − ∂n

z̄ f1∂
n
z f2) .

• To lowest order in ℓ0, Moyal ⇒ Poisson bracket,

[f(X1, X2), g(X1, X2)] ∼ −iℓ2
0 ϵij ∂if ∂jg ≡ −iℓ2

0{f, g}
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Bulk density operator algebra in 2d

• Projected density operator ρ̂(x, y) (many-body!) weighted by an envelop
function f(x, y):

ρ̂(f) :=
∫
d2x f(x, y)ρ̂(x, y)

• ρ̂(f) satisfies the Girvin-MacDonald-Platzman algebra

[ρ̂(f1), ρ̂(f2)] = i ℓ2
0 ρ̂({{f1, f2}}) ∼ i ℓ2

0 ρ̂({f1, f2}})

[Girvin-MacDonald-Platzman(85), Iso-Karabali-Sakita(92), Cappelli-Trugenberger-Zemba(93),

Fairlie-Fletcher-Zachos(89)]

• Note: f(x, y) = eik·r as an example.

[ρ̂(k), ρ̂(q)] = 2i ek·qℓ2
0 sin

(
k×qℓ2

0
2

)
ρ̂(k + q)
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Boundary U(1) current algebra

• Boundary of (F)QH states support chiral edge states

• Density operator at the boundary of QH droplet obeys the U(1) current
algebra

[ρ̂(x), ρ̂(x′)] = −i ν2π∂xδ(x− x′)︸ ︷︷ ︸
Schwinger term

.

• For integer filling ν, can be derived from the non-interacting chiral edge
mode described by Ĥ =

∫
dx

∑ν

a=1 ψ̂
†
ai∂xψ̂a.

• Can also be written as (Note: ρ̂[fi(x) = δ(x− xi)] = ρ̂(xi))

[ρ̂(f1), ρ̂(f2)] = −iν
2π

∫
∂M2

f1df2
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Bulk-boundary correspondence (i)

• [Martinez-Stone (93)]: set fi(x, y) = fi(x)g(y),

[ρ̂(f1), ρ̂(f2)] ∼ iℓ2
0

2

∫
dx

∫
dy [(∂xf1)f2 − (∂xf2)f1] ∂yg

2 ρ̂(x, y).

• g(y) is non-zero (constant) around the edge, and changes only deep
inside/outside of the droplet (where ∂yg

2 is finite);

• Replacing ρ̂→ ⟨ρ̂⟩ =: ρ0 in the bulk,

[ϱ̂(f1), ϱ̂(f2)] ∼ −iρ0ℓ
2
0

∫
∂M2

f1df2,

where ϱ̂ denotes boundary density operator.
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Bulk-boundary correspondence (ii)

• The many-body ground state in the presence of the boundary:

• Operators have to be normal ordered with respect to the ground state:∑
Anmĉ

†
nĉm ⇒

∑
Anm : ĉ†

nĉm :

• The algebra of normal-ordered (and projected) density operator is the
U(1) current algebra. [Azuma (94)]
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Summary in (2+1)d

Bulk Edge

Density algebra U(1) current algebra

Coordinate algebra

• Many-body approach to topological insulators and bulk-boundary
correspondence

• Current algebra as spectrum-generating algebra
• For FQHE, the bulk density operator can create charge neutral excitations
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Higher-dimensional generalization?

• Higher-dimensional topological insulators and Landau level models
[Zhang-Hu(01); Karabali-Nair (02); Li-Wu (13), · · · ] E.g., in 4 spatial dimensions
characterized by the 2nd Chern number

• “4-bracket structure” for single-particle projected position operators has
been identified

[X1, X2, X3, X4] := ϵijkl XiXjXkXl ∼ iℓ4
0

[Recall: Xi = i∂/∂ki −Ai(k) and [Xi, Xj ] = Fij(k)]
[Neupert-Santos-SR-Chamon-Mudry (12), Estienne-Regnault-Bernevig (12), Shiozaki-Fujimoto (13), Hasebe

(14-17)]

• Question: Is there a many-body implication for this?
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Bulk Surface

??? ???

Coordinate algebra
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Many-body (?)

• Correspondingly to the four bracket of the position operators, for four
smearing functions, fi(X1, X2, X3, X4),

[f1, f2, f3, f4] ∼{f1, f2, f3, f4} ≡ ϵijkl ∂if1∂jf2∂kf3∂lf4,

assuming lower-brackets vanish. Here, {· · · } is the Nambu bracket.
[Nambu(73)]

• One may expect (?):

[ρ̂(f1), ρ̂(f2), ρ̂(f3), ρ̂(f4)] ∼ iρ̂[{f1, f2, f3, f4}] + · · ·

and following [Martinez-Stone] , set fa(xi, w) = fa(xi)g(w)

[ϱ̂(f1), ϱ̂(f2), ϱ̂(f2), ϱ̂(f3)] ∼ −iρ0
∫

∂M4
f1df2df3df4.
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Result 1: Bulk algebra

• For projected density operator ρ̂(q), consider:

[ρ̂ (q1) , ρ̂ (q2) , · · · , ρ̂ (qd)]mod

≡ ϵi1i2···id ρ̂(qi1 ) · · · ρ̂(qid
)− (k-body terms with k > 1)

• Bulk density operator algebra in d = even dim:

[ρ̂ (q1) , ρ̂ (q2) , · · · , ρ̂ (qd)]mod

∝ (q1 ∧ · · · ∧ qd)
∑occ.

a,b

∫ ddk
(2π)d ϵ

µ1...µd

× [Fµ1µ2 (k) · · · Fµd−1µd (k)]ab χ̂†
a(k)χ̂b(k) + · · ·

• In the q → 0 limit and for constant topological density,

[ρ̂ (f1) , · · · , ρ̂ (fd)]mod ∼ ρ
−1
0 (d/2)!

(
i

2π

)d/2 Chd/2 ρ̂ ({f1, · · · , fd})
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Result 2: Boundary from bulk – Martinez-Stone way

• Following [Martinez-Stone], set fi(x) = fi(x)g(w) (x = (x, y, z, w) = (x, w))

• We then deduce the boundary algebra,

[ϱ̂ (f1) , · · · , ϱ̂ (fd)]mod ∼ −(d/2)!
(

i
2π

)d/2 Chd/2
∫

∂Md
f1 df2 · · ·dfd

• This looks nice, but heuristic.

• Can we give a more precise derivation of this?

15 / 22



Result 3: Boundary from bulk – Azuma’s way

• Instead of following Martinez-Stone, we follow Azuma:

• Consider (i) ground state in the presence of a boundary and then (ii)
normal-ordered the (projected) density operator

• Using hybrid Wannier orbitals, the calculations reduce to purely boundary
ones; We consider the boundary density operator ϱ(x) with of the Weyl
system:

ĤWeyl =
∫

∂M4
d3x

∑3
i=1 ψ̂

†i∂iσiψ̂,

(when the bulk Chern number is 1.)
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Result 3: Boundary from bulk – Azuma’s way

• 4-bracket of normal-ordered density operators:

[ϱ̂(f1), ϱ̂(f2), ϱ̂(f3), ϱ̂(f4)]

= ϵi1i2i3i4 ϱ̂(fi1 )ϱ̂(fi2 )ϱ̂(fi3 )ϱ̂(fi4 )

= ϱ̂([f1, f2, f3, f4]) + b4(f1, f2, f3, f4) + ϵijklQ̂2(fifj ⊗ fkfl),

• Q̂2: some four fermion operator.
• b4: c-number part; “Schwinger term”

• The c-number part b4

b4 ([f1, f2, f3, f4]) = Tr ([f1, f2, f3, f4]P−)

• C.f. in (1+1)d,

[ϱ̂(f1), ϱ̂(f2)] = ϱ̂([f1, f2]) + b2(f1, f2)︸ ︷︷ ︸
Schwinger term
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Result 3: Boundary from bulk – Azuma’s way

• The c-number part b4 can be split into two parts: b4 = R4 + S4, where

R4(f1, f2, f3, f4) = 1
16 ϵ

αβγδ Tr (F {F, fα} {F, fβ} [F, fγ ] [F, fδ])
S4(f1, f2, f3, f4) = − 1

32 ϵ
αβγδ Tr (F [F, fα] [F, fβ ] [F, fγ ] [F, fδ])

where

F (p) =
∑3

i=1
piσi
|p| :“the grading operator”

• For reasonable fα, S4 is well-defined (cutoff independent) since it is given
as the trace of trace class operators. On the other hand, R4 is cutoff
dependent.
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Schwinger term S4

• The contribution S4 is evaluated as [Langmann (95)].

S4(f1, f2, f3, f4) = − 1
48π2

∫
∂M4

ϵijkl fidfjdfkdfl

Recall: [ϱ̂(f1), ϱ̂(f2)] = −iν
2π

∫
∂M2

f1df2

• Appears in noncommutative geometry
- i[F, · ] is a generalization of exterior derivative;
- Trc is a generalization of integral;

Trcϵ
ij···(fi[F, fj ] · · · )←→

∫
fidfj · · ·

• Also appears in the noncommuative geometry approach to the (mostly
integer) quantum Hall effect. [Bellissard-Schulz-Baldes-van Elst (94), Prodan-Leugn-Bellissard

(13), ...]
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Further result

• We focused on the density operator algebra, as they are directly related to
the coordinate algebra. Also, naively, density is a generator of U(1)
symmetry.

• However, it may also be important to include currents.
• Indeed, if we try to make connections with quantum anomalies, it would

be natural to consider currents. Usually, anomaly states non-conservation
of currents in the presence of background gauge field. One may “convert”
background by current operators.

• For the boundary (non-Abelian) current operators, we showed

1
8 ϵ

i0i1i2i3
[[[

Ĵ0 (fi0 ) , Ĵ1 (fi1 )
]
, Ĵ2 (fi2 )

]
, Ĵ3 (fi3 )

]
= iĴ0 ([f0, f1, f2, f3]) + b4 ([f0, f1, f2, f3])

where Ĵµ(f) =
∫

∂M4
d3x fab(x) : ψ̂†

a(x)σµψ̂b(x) : (µ = 0, . . . , 3).
• The repeated commutator – may be related to non-linear response.
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More speculations

• Quantum field theory descriptions? Noncommutative Chern-Simons theory
[Susskind (01)]

S = 1
2π

∫
BdA

+ k
4π

∫
dtd2x ϵµνλ

[
Aµ ⋆ ∂νAλ + i

2
3Aµ ⋆ Aν ⋆ Aλ

]︸ ︷︷ ︸
∼Aµ∂ν Aλ+ θ

3 {Aµ,Aν }Aλ

The BF term appears due to the functional bosonization [Cf.

Chan-Hughes-SR-Fradkin (13)]

• Perhaps:

S ∼ 1
2π

∫
BdA+

∫
dtd4x εµνλ

[
5d Chern-Simons term

+ θεµνλρκσ{Aµ, Aν , Aλ, Aκ}Aσ

]
• It may be also related to other areas, such as string theory.
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Comments

• Overall, the role of (higher) non-commutative coordinates in the
many-body context is still unclear.

• The renormalization or subtraction of R4?

• Our calculations are many-body but non-interacting. The field theory
formulation may be useful: “Hydrodynamic” or “bosonization”approach to
interacting topological states.

• Boundary collective excitations; gravitons? [“Collective excitations at the boundary of a

4D quantum Hall droplet” [Hu-Zhang (01)] [Elvang-Polchinski (02)]]

• Similar structure for Fermi surfaces: [Pok Man Tam-Kane(23)]

sM (q1, . . . ,qM−1) =
∫

dDqM

(2π)D ⟨ρq1ρq2...ρqM ⟩c ,

s4(q1,q2,q3) = |q1·(q2×q3)|
(2π)3 χF
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