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Outline

® Review of 2d case
- Noncommutative coordinates (single-particle)

- GMP algebra (many-body)
- Bulk-boundary correspondence

® Higher dimensional generalization (mainly 4d)
- Higher dimensional “currrent algebra”
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Topological band insulators
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® Occupied bands are characterized by the Berry connection A%’ (k)
(curvature Fji%(k)) and topological invariants, e.g., Chern number

® Non-trivial boundary states; bulk-boundary correspondence

® Density operator p(q) projected to the occupied bands below the band
gap.
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Coordinate algebra in 2d

® Physics confined within the lowest Landau level (LLL):
E

hw,

® Position operators (in the first quantization) projected on to LLL (= X;)
do not commute

[X1, Xo] = —if3,

where o = /1/eB is the magnetic length.
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Coordinate algebra in 2d

® For functions f(xz1,22) and their projected counterparts, f(X1, X2),
[f(Xh X2)7g(X1’ XQ)] = Zég{{f(Xh X2)79(X17X2)}}7
where {{--- }} is the Moyal bracket

(P2 o= ity Y00, G (00102 2 = 02 1101 2)

® To lowest order in £y, Moyal = Poisson bracket,

[f(X1, X2),9(X1, X2)] ~ —il] € 0 f D59 = —ils{f, g}
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Bulk density operator algebra in 2d

Projected density operator p(x,y) (many-body!) weighted by an envelop
function f(z,y):

ﬁ(f) = fde f(x,y)ﬁ(:r:,y)

p(f) satisfies the Girvin-MacDonald-Platzman algebra

[6(f1), A(f2)] = i €6 p({ fr, f21}) ~ 6§ p({ f1, f2}})

[Girvin-MacDonald-Platzman(85), Iso-Karabali-Sakita(92), Cappelli-Trugenberger-Zemba(93),
Fairlie-Fletcher-Zachos(89)]

Note: f(z,y) = €™ as an example.

) )] = 20 =7 sin (222 ot + )

6/22



Boundary U(1) current algebra

Boundary of (F)QH states support chiral edge states

Density operator at the boundary of QH droplet obeys the U(1) current
algebra

PN P __‘L o
[p(x), p(a")] = —ig-0sd(x — a').
Schwinger term

For integer filling v, can be derived frgm the non-interacting chiral edge
mode described by H = [dax Y "_ Pli0u1,.

Can also be written as (Note: p[fi(z) = d(x — )] = p(x1))

[6(£1), 2(f2)] = 52 Jons, rlf2
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Bulk-boundary correspondence (i)
® [Martinez-Stone (93)]: set fi(x,y) = fi(z)g(v),

(1), p(fa)] ~ B [ da [ dy [(0a 1) f2 — (s fo) Fa] Dyg® Pl y)-

® ¢(y) is non-zero (constant) around the edge, and changes only deep
inside/outside of the droplet (where 9, is finite);

tdge

® Replacing p — (p) =: po in the bulk,
[0(f1), 8(f2)] ~ —ipold [, frdfa,

where ¢ denotes boundary density operator.
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Bulk-boundary correspondence (ii)

® The many-body ground state in the presence of the boundary:

V(x)

® QOperators have to be normal ordered with respect to the ground state:

Z Apméle,, = Z Apm : éhe,

® The algebra of normal-ordered (and projected) density operator is the
U(1) current algebra. [Azuma (94)]

9/22



Summary in (2+1)d

Bulk Edge

Coordinate algebra
[X17 Xg] = Zgg

Density algebra U(1) current algebra
P, 2(F2)) = i30S W) | (o). o) = 5 / Fudf

® Many-body approach to topological insulators and bulk-boundary
correspondence

® Current algebra as spectrum-generating algebra
® For FQHE, the bulk density operator can create charge neutral excitations
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Higher-dimensional generalization?

® Higher-dimensional topological insulators and Landau level models
[Zhang-Hu(01); Karabali-Nair (02); Li-wu (13), ---] E.g., in 4 spatial dimensions
characterized by the 2nd Chern number

® “4-bracket structure” for single-particle projected position operators has
been identified

(X1, X2, X3, X4] == im0 Xi X; X Xy ~ il

[Recall: X; =140/0k; — Ai(k) and [X;, X;] = Fi; (k)]
[Neupert-Santos-SR-Chamon-Mudry (12), Estienne-Regnault-Bernevig (12), Shiozaki-Fujimoto (13), Hasebe
(14-17)]

® Question: Is there a many-body implication for this?
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Bulk

Coordinate algebra
[X1, X, X3, X4] ~ il5

77

Surface

777
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Many-body (?)

Correspondingly to the four bracket of the position operators, for four
smearing functions, f;(X1, X2, X3, X4),

[f1, f2, f3, fa] ~{f1, f2, f3, fa} = €ijr1 0i f10; f2O 30 fa,

assuming lower-brackets vanish. Here, {---} is the Nambu bracket.
[Nambu(73)]

One may expect (?):

(6(f1), p(f2), p(f3), p(f2)] ~ ip[{ f1, f2, f3, fa}] + -+~

and following [Martinez-Stone| , set fq(xi, w) = fa(x;)g(w)

[0(f1), 8(f2), 0(f2), 6(f3)] ~ —ipo [, frdfadfsdfa.
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Result 1: Bulk algebra

® For projected density operator p(q), consider:

[[) (ql) 7ﬁ (q2) y aﬁ(qd)]mod
= €iyigig P(qi,) - Pa;,) — (k-body terms with k > 1)

® Bulk density operator algebra in d = even dim:

P(@2), 0 (da)]mod
q, A /\qd ZOCC f (Qﬂ)d
X [ Furpg (B) - Frug_ypa (k)] ab )A(L(k)xb(k) +oe

® In the ¢ — 0 limit and for constant topological density,

(A (aq,

X

)
(
[6(f1), - s (f)lmea ~ £5 (/2! (52) " Chajap ({1, fa})
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Result 2: Boundary from bulk — Martinez-Stone way

Following [Martinez-Stone], set fi(x) = fi(x)g(w) (& = (z,y, z,w) = (X, w))

We then deduce the boundary algebra,

. ~ i \d/2
[0(f1), 0 (fa)lnoq ~ —(d/2)! (E) / Chay2 fBMd f1 dfs - dfa
This looks nice, but heuristic.

Can we give a more precise derivation of this?
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Result 3: Boundary from bulk — Azuma's way

® Instead of following Martinez-Stone, we follow Azuma:

® Consider (i) ground state in the presence of a boundary and then (ii)
normal-ordered the (projected) density operator

® Using hybrid Wannier orbitals, the calculations reduce to purely boundary
ones; We consider the boundary density operator o(x) with of the Weyl
system:

. 5 s .
Hyweyr = f8M4 xy0 Plidioih,

(when the bulk Chern number is 1.)
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Result 3: Boundary from bulk — Azuma's way

® 4-bracket of normal-ordered density operators:

[0(f1), &(f2), (f3), 6(f)]
ei1i2i3ia (f”)@( ) (fzs) (fu)

= 0([f1, fo, f3, fa]) + ba(f1, fo, f3, fa) + €77 Qa(fifs ® frfo),

° QQ: some four fermion operator.
® by: c-number part; “Schwinger term”

® The c-number part by
ba ([f1, fo, f5, fa]) = Tx ([fr, f2, f3, fa] P-)
o Cf in (1+1)d,
[6(f1), &(f2)] = &([fr, f2]) + M

Schwinger term
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Result 3: Boundary from bulk — Azuma's way

® The c-number part by can be split into two parts: by = R4 + Sa, where

Ra(fr, fa, f3, [4) = 15€*77° Te (F{F, fa} {F, f} [F, /5] [F, fs])
Sa(fr, fo, f3, fa) = —55€*P7° Te (F [F, fo] [F, 5] [F, f7] [, f5])

where

3 i0q L . "

Flp)=>_, st :"the grading operator

® For reasonable fo, Si is well-defined (cutoff independent) since it is given
as the trace of trace class operators. On the other hand, Ry is cutoff
dependent.
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Schwinger term Sy

® The contribution Sy is evaluated as [Langmann (95)].
Sa(f1, far f3, fa) = — g5z [opr, €7 fidfidfndfy

Recall: [o(f1), 6(f2)] = 32 [,,, Frdf2

® Appears in noncommutative geometry
- i[F, -] is a generalization of exterior derivative;
- Tr. is a generalization of integral;

Tree”  (fi[F, f5] -+ ) +— ff"dfj T

® Also appears in the noncommuative geometry approach to the (mostly
integer) quantum Hall effect. [Bellissard-Schulz-Baldes-van Elst (94), Prodan-Leugn-Bellissard
(13), -]
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Further result

We focused on the density operator algebra, as they are directly related to
the coordinate algebra. Also, naively, density is a generator of U(1)
symmetry.

However, it may also be important to include currents.

Indeed, if we try to make connections with quantum anomalies, it would
be natural to consider currents. Usually, anomaly states non-conservation
of currents in the presence of background gauge field. One may “convert”
background by current operators.

For the boundary (non-Abelian) current operators, we showed
30125 [[1Jo (fio) , J1 (Fir)]  J2 (fin)] s Js (fis)]
= iJo ([fo, f1, fo, fa]) + ba ([fo, f1, fa, f3))
where J,,( faM %% fap(x) : P} (X)outbp(x) 1 (u=0,...,3).

The repeated commutator — may be related to non-linear response.
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More speculations

® Quantum field theory descriptions? Noncommutative Chern-Simons theory
[Susskind (01)]

S =5 [BdA

+ ﬁ fdtdzx P [AM * 0y Ax + i%AM * A, * AA]

~ALB, AN+ E{ AL, AL YA

The BF term appears due to the functional bosonization [cr
Chan-Hughes-SR-Fradkin (13)]

® Perhaps:

S~ 3= [ BdA + [ dtd*xe"**[5d Chern-Simons term
+ 0" Ay Ay, Ax, Ar}As

® |t may be also related to other areas, such as string theory.
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Comments

Overall, the role of (higher) non-commutative coordinates in the
many-body context is still unclear.

The renormalization or subtraction of R4?

Our calculations are many-body but non-interacting. The field theory
formulation may be useful: “Hydrodynamic” or “bosonization"approach to
interacting topological states.

Boundary collective excitations; gravitons? [“Collective excitations at the boundary of a
4D quantum Hall droplet” [Hu-Zhang (01)] [Elvang-Polchinski (02)]]

Similar structure for Fermi surfaces: [Pok Man Tam-Kane(23)]

4D
sm(di,. -, qm-1) = f (2,3% (ParPas...Pan ) »
84(q17q27q3) = %XF
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