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Bulk-edge correspondence



Topological insulators

original context: independent electrons in a crystal (possibly disordered)

bulk picture

Ex: H = `2(Z2),H = H∗

σ(H)

H 7→ I(H) ∈ Z continuous

edge picture

H] = `2(Z× N),H] = H|H]

chiral edge modes

σ(H])

H] 7→ I](H]) ∈ Z continuous

Bulk-edge correspondence: I = I]

Reminiscent of Atiyah-Singer ’63: geometrical index = analytical index
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Example: Chern insulators Hatsugai ’93

Context: Integer Quantum Hall Effect - Independent electrons on a 2d lattice

kx

E

C = nbottom − ntop

nbottom = +1− 1

ntop = −1

C is the Chern number: bulk index associated to a U(1)-fiber bundle of a bulk

band over the (magnetic) Brillouin zone T2.

nbottom/top is the number of edge mode branches below/above the band
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A fruitful concept for mathematics

• Bulk-edge correspondence is a very nice interface where physical

observables are turned into mathematical theorems.

• This includes various dimensions, symmetries, disorder, periodic driving

(Floquet) and some interactions.

• Several approaches from functional analysis to K-theory, passing by

(differential/non-commutative) geometry

Avron Seiler Simon ’94, Bellissard Van Elst Schulz-Baldes ’94, Kellendonk

Richter Schulz-Baldes ’00, Graf Elbau ’02, Combes Germinet ’05, Graf Porta’

13, Avila et. al ’13, Essin Gurarie ’11, Kubota ’15, Prodan Schulz-Baldes ’16,

Mathai Thiang ’16, Bourne Rennie ’18, Graf T. ’18, Drouot ’19, Gomi Thiang

’19, Shapiro T. ’19, Cornean et al ’21, Kubota ’21, Bal ’23, Ogata ’23...

Q: can it fail?
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A puzzling example

Dirac Hamiltonian in 2d (massive and regularized).

The Chern number is fixed to C = ±1 in a bulk infinite system.

Edge spectrum for various boundary conditions:
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What is wrong here ?

• The system is closed, single-particle, translation-invariant and the

boundary condition is self-adjoint (Hermitian model)

• Edge mode branches hidden above in the spectrum? Actually not

• The only difference is that bulk bands and gaps are unbounded

• Generalized bulk-edge correspondence

C+ = nb + w∞

where w∞ is dubbed “ghost topological charge”.

Today’s talk: what is w∞ and what are the consequences.
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Anomalies in Dirac Hamiltonian



Massive and regularized Dirac Hamiltonian

H =

(
m + ε(∂2

x + ∂2
y ) i∂x + ∂y

i∂x − ∂y −m − ε(∂2
x + ∂2

y )

)
= iσx∂x + iσy∂y + σz(m + ε(∂2

x + ∂2
y ))

• For ε = 0 this is a paradigmatic model describing conical intersections in

graphene (m = 0) or gap opening mechanisms in topological insulators

(e.g. Haldane, Kane Mele models)

• One should think of 0 < ε� 1 as a regularization term (see below)

• In Volovik’88 such a model with finite ε describes topological effects in a

superfluid 3-He film
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Band structure

On L2(R2)⊗ C2 the system is translation invariant so that i∂tΨ = HΨ

becomes, by Bloch/Fourier theorem:

Hψ = ωψ , ψ =

(
ψ1

ψ2

)
, H(kx , ky ) =

(
m − εk2 −kx + iky

−kx − iky −m + εk2

)
,

with k2 = k2
x + k2

y and kx , ky ∈ R2 (unbounded Brillouin zone).

Two energy bands ω±(kx , ky ) = ±
√

k2 + (m − εk2)2 separated by a spectral

gap of size m.

8



Line bundles and compactification

Upper band : H(kx , ky )ψ+(kx , ky ) = ω+(kx , ky )ψ+(kx , ky ) with ψ+ ∈ C3

Let P+ = |ψ+〉〈ψ+| be the associated rank 1 eigenprojection.

kx

ky

P+(kx , ky )

0

∞

P+(kx , ky )

For ε 6= 0, P+ is single-valued as k →∞. It actually defines a U(1)-line bundle

over the closed manifold R2 ∪ {∞} ∼= S2.
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Bulk index

For ε 6= 0, P+ and P− are single-valued as k →∞ and each one defines a line

bundle over the closed manifold R2 ∪ {∞} ∼= S2.

Proposition Graf, Jud, T. ’21

For ε 6= 0 and P = P±, the Chern numbers

C(P) =
1

2πi

∫
S2

dkxdky tr(P[∂kxP, ∂kyP])

are topological indices with

C(P±) = ± sgn(m)+sgn(ε)
2

= ±1.

• C 6= 0 indicates the obstruction of finding a regular eigenfunction

ψ(kx , ky ) over the whole S2.

• If ε = 0 then the r.h.s reads ± 1
2
sgn(m) but C± is not continuous.
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Proof

H = ~d · ~σ where ~d = (kx , ky ,m − εk2) and ~σ = (σx , σy , σz)

Eigenprojections in terms of ~e =
~d

|~d |
: P± =

1

2

(
(~e · ~σ)2 ± ~e · ~σ

)
For ε > 0,

~e →

 0

0

−1


as k →∞, so that ~e : S2 → S2 and

C± = ±
∫
S2

(~e)∗vol

Notice that, for ε = 0, let (kx , ky ) = (r cos θ, r sin θ). Then

~e →

cos(θ)

sin(θ)

0


as r →∞. The limit depends on the direction.
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The edge picture

x

y

m > 0

C± = ±1

Solve i∂tΨ = HΨ on L2(R× R+)

H]ψ̃ = ωψ̃, H](kx) =

(
m − εk2

x + ε∂2
y −kx + ∂y

−kx − ∂y −m + εk2
x − ε∂y

)

Add a self-adjoint boundary condition. ODE problem to solve for each value of

kx and ω. Either: oscillating solution (bulk mode), solution decaying away from

the boundary (edge mode) or no solution. Leads to edge spectrum.
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Counting edge modes

Focus on the upper band with C+ = 1
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ψ̃2(0)=0

→ nb = 1

Condition (a)

ψ̃1(0)=0

ψ̃′
2(0)+kxψ2(0)=0

→ nb = 2

Condition (b)

(A+ikxB)ψ̃(0)

+Cψ̃′(0)=0

→ nb = 3

Condition (c)

ψ̃1(0)=0

ψ̃′
2(0)−kxψ2(0)=0

→ nb = 0

with A=

1 1

9 1

, B=

4i −i

i −i

, C=

1 0

0 1


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Scattering amplitude

x

y

ψin(kx,−κ) ψout(kx, κ)

ψscat ∼
y∞
ψin + S ψout

• Choose a boundary condition at y = 0. Fix kx ∈ R, ky = κ > 0.

• Let ω = ω+(kx , κ), and notice that ω(kx ,−κ) = ω.

• In the bulk R2, there are two solutions (plane waves) ψout and ψin

travelling at momentum (kx ,±κ) and same energy ω.

• It exists S such that

ψscat = ψin + Sψout + o
y∞

(1)

satisfies the boundary condition of the edge problem.

• S(kx , κ) ∈ U(1) is the scattering (reflection) amplitude. It exists for any

(kx , κ) ∈ R× R∗+, with ω = ω+(kx , κ).
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Edge modes and levinson’s theorem

kx

ω

k∗x

S(kx, κ)

k1x k2x

Theorem Graf, Porta ’13

lim
κ→0

1

2π

∫ k2
x

k1
x

(S−1∂kxS)dkx = nb
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Some examples
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S−1∂kxS = arg[S(kx , κ)] for κ = 0.1, 0.05 and 0.01.
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Bulk-scattering correspondence
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Theorem Graf, Jud, Tauber ’21

For any closed, anti clockwise and not self-intersecting curve Cδ inside the

upper bulk band
1

2π

∫
Cδ

S−1dS = C+

Proof: S is also a transition function between two bulk sections.

In the limit δ → 0 we recover nb and, possibly, some contribution at ∞
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Ghost topological charge
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Dual variables λx , δ with

kx = − λx
λ2
x+δ2 , κ = δ

λ2
x+δ2

so that δ → 0 and λx = 0± explores (kx , κ) = (0∓,∞).

Compute

∫
S−1∂λxS(λx , δ) for 1� δ1 > δ2 > δ3 > 0
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Ghost topological charge
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w∞ = 0 w∞ = −1 w∞ = −2 w∞ = 1

C+ = nb + w∞ (!)

w∞ is interpreted as a “ghost” topological charge at infinity
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Partial summary

• The scattering amplitude is a pivotal tool for bulk edge-correspondence.

• It detects nb via Levinson’s theorem

• Its winding on a closed curve is the Chern number C+

• In the case where C+ 6= nb, an additional winding contribution w∞
appears exactly at infinity, even though there are no edge modes there:

C+ = nb + w∞

In particular, C+ and w∞ fix the value of nb.

• This formalism also exists in other 2D continuous (see below) or discrete

tight-binding models (Graf, Porta ’13).

• It would probably work in arbitrary dimension. However it strongly relies

on translation invariance.

When do we have w∞ 6= 0?
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Classification: boundary conditions

• General local and x-translation invariant boundary condition

(B0 + ikxB1)ψ̃ + B2ψ̃
′
∣∣∣
y=0

= 0

with B0,B1,B2 ∈ M2(C). Or equivalently

AΨ|y=0 = 0, Ψ =

(
ψ̃

ψ̃′

)
∈ C4

with A := A0 + ikxA1 ∈ M2,4(C),A0 := [B0|B2],A1 := [B1|0]

• A ∼ GA for G ∈ GL2(C). The GL2-invariance reduces the problem to

Gr2,4(C) (Schubert cell decomposition)

• Self-adjoint condition 〈φ,H](kx)ψ〉 = 〈H](kx)φ, ψ〉 imposes further

constraints on A.

Result: Exhaustive classification of local, x-translation invariant and

self-adjoint boundary conditions.
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Dirichlet ∈ A1,2, Conditions a/b/c ∈ A1,4, A3,4, A1,4 21



Classification: anomalies

• For each boundary condition A, the scattering amplitude S can be

computed and expanded near ∞ via dual variables.

• w∞ can be computed analytically for each class.

• Quite tedious but doable with a formal computer software like

Mathematica (some expressions have about 70 terms, from which one

needs to extract the leading order).

• Exhaustive classification of anomalies
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Classification: anomalies

Anomalies are everywhere! w∞ ∈ {0,±1,±2}
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Digression: shallow-water waves



Motivation

Topological edge modes have been actually observed in many classical wave

systems (acoustic, optics, fluids,....).

What is the biggest topological insulator on Earth?

The Earth itself!
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The rotating, linearized, and odd-viscous shallow-water model

∂tη = −H ~∇ · ~u (mass conservation)

∂t~u = −g ~∇η − f ~u⊥ + ν∇2~u⊥ (momentum conservation)

with ~u = (u, v) and ~u⊥ = n̂ × ~u = (−v , u),

−g ~∇η : gravity pressure,

−f ~u⊥ : Coriolis effect with f = 2~Ω · n̂ = 2Ω sin(y)

ν∇2~u⊥ : odd-viscous regularizing term with 0 < ν � 1
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The bulk picture

f -plane approximation Thomson 1880

Tangent plane: Ω = R2 and Coriolis f is a constant

The system is formally analogous to i∂tψ = Hψ with

ψ =

ηu
v

 , H =

 0 px py

px 0 −i(f − νp2)

py i(f − νp2) 0


where px = −i∂x , py = −i∂y and p2 = p2

x + p2
y .

Prop: H is a (densely defined) self-adjoint operator on L2(R2,C3).

By translation invariance, normal modes ψ = ψ̂ei(ωt−kx x−ky y) reduce to

Hψ̂ = ωψ̂,

with H(kx , ky ) ∈ M3(C). Both frequency ω ∈ R and momentum kx , ky ∈ R2

are unbounded.
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Band structure and bulk index

Eigenvalues of H:

ω±(kx , ky ) = ±
√

k2 + (f − νk2)2, ω0(kx , ky ) = 0

with kx , ky ∈ R2 and k2 = k2
x + k2

y .

For f 6= 0 the three bands are separated by two spectral gaps.

Eigenprojection P±,P0 : R2 → M3(C) define a line bundle over S2 when ν 6= 0.

Chern number C± = ±2 and C0 = 0.
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Anomalous bulk edge correspondence

Boundary condition v |y=0 = 0, (∂xu + a∂yv)|y=0 = 0 with a ∈ R.
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Comparing the two models

• Dirac: H = ~d · ~σ where ~d = (kx , ky ,m − εk2) and

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

C(P±) = ±1

• Shallow-water: H = ~d · ~S where ~d = (kx , ky , f − νk2) and

S1 =

0 1 0

1 0 0

0 0 0

 , S2 =

0 0 1

0 0 0

1 0 0

 , S3 =

0 0 0

0 0 −i
0 i 0

 .

C(P±) = ±2, C0 = 0

Very likely to work for any H = ~d · ~S where ~S is a spin-s representation, with

C(Pm) = 2m, m ∈ {−s,−s + 1, . . . , s − 1, s}.

28



Towards new physics?



Curing the anomaly

• Topological interface instead of sharp wall
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Channel geometry

Schallow-water waves for (a) Dirichlet and (b/c) v |y=0 = 0, (∂xu±∂yv)|y=0 = 0

(a) nb = 2, w∞ = 0 (b) nb = 1, w∞ = 1 (c) nb = 3, w∞ = −1
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Local density of states

Back on the upper half-plane: (x , y) ∈ R× R+. Consider

ρ(y , ω) =

∫
dkxdκ |ψscat(kx , κ, y)|2 δ(ω − ω+(kx , κ))

After some a algebra we get

ρ(y , ω) = ρ0(ω) +

∫ kmax

−kmax

dkx R(y , kx , ω)

where ρ0(ω) is indep. of y and the boundary condition, and

R(y , kx , ω) =
g(ω)

κout

(
2Re

(
〈ψin,Sψout〉+〈ψin,Tψev〉+〈Sψout,Tψev〉

)
+|Tψev|2

)

Lets plot R(0, kx , ω).
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Local density of states

w∞ = 0 w∞ = 1 w∞ = −1
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Conclusion



Conclusion and perspective

• The bulk-edge correspondence does not hold for the (massive and

regularized) Dirac Hamiltonian and shallow-water waves

• Generalized relation

C+ = nb + w∞

where w∞ is interpreted as a “ghost” topological charge.

• This is not a fine-tuned effect (cf. anomaly classification and shallow

water waves)

• Scattering amplitude is the key concept.

Perspectives:

• Could be investigated in any d or with symmetries.

• What about ε = 0?

• The main challenge remains to find a physical interpretation of w∞.
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Further reading

P. Delplace A. Venaille G. M. Graf H. Jud G. C. Thiang

• Tauber, Delplace, Venaille, J. Fluid Mech. 868, R2 (2019)

• Tauber, Delplace, Venaille, Phys. Rev. Research 2(1) 013147 (2020)

• Graf, Jud, Tauber, Communications in Mathematical Physics, 383(2),

731-761 (2021)

• Tauber, Thiang, Annales Henri Poincaré, 24, 107-132 (2023)

• Jud, Tauber, arXiv:2403.04465 (2024)

Thank you!
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