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Simulating physics with 	

(quantum) computers	




• Want:   isolation + control	


•  Have:   decoherence + imprecision	


• Need:   error correction	
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Information in a subsystem B of a subspace C = A⌦B
of H. Projector P , channel C(⇢) := P⇢P . A channel
E 2 B(H) is correctable if there exists a recovery channel
R with

R � E � C = F � C. (1)

for some F 2 B(C) with trivial action in B.
In practice class of channels E

n
✏ ✓ B(H), implic-

itly dependent on n, ✏ parametrizes a restriction on
the noise level and n indexes the Hilbert space, typi-
cally Hn := H⌦n

0

for some H
0

. We choose some class
Nµ(A,B) ✓ B(A⌦B) with µ parametrizing the amount
of noise allowed on B. Goal: find encodings Ci = Ai⌦B
in Hn, with n a function of i, so that for a given ✏ there
is a function µ of i such that limi!1 µ = 0 and for any i
and E 2 E✏ there is F 2 Nµ(Ai, B) with (??). If this is
true for any ✏ < ✏

0

then we say that the code family has
threshold ✏

0

.
Class of noisy recoveries R⌘ ✓ B(Hn), with ⌘ quanti-

fying the noise level, and for each i a class E✏,µ ✓ B(Hn)
that encompasses both E✏ and Nµ(Ai, B). ✏ quantifies
generic noise, µ ’logical’ noise. Then as in (??) but with
R 2 R⌘, E 2 E✏,µ and F 2 E✏̄,µ̄, in such a way that
lim⌘!0

✏̄ = 0 and for (✏, ⌘) within a certain neighborhood
of (0, 0) we have limi!1 µ̄ = µ.
Stabilizer codes. Given a system Hn

2

of n quits, sub-
space C defined by a stabilizer S, a subgroup of the
Pauli group P of operators with �1 62 S. Namely,



•  Errors are local	


•  Encode in collective degrees of freedom	


Locality of noise	


logical qubit	
 physical qubits	


likely	
 unlikely	




Transversal gates	


•  To compute we need unitary ‘gates’ on logical qubits	


•  Aim: preserve locality (do not spread errors)	


•  How: act on subsystems separately	
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Information in a subsystem B of a subspace C = A⌦B
of H. Projector P , channel C(⇢) := P⇢P . A channel
E 2 B(H) is correctable if there exists a recovery channel
R with

R � E � C = F � C. (1)

for some F 2 B(C) with trivial action in B.
In practice class of channels En

✏ ✓ B(H), implic-
itly dependent on n, ✏ parametrizes a restriction on
the noise level and n indexes the Hilbert space, typi-
cally Hn := H⌦n

0

for some H
0

. We choose some class
Nµ(A,B) ✓ B(A⌦B) with µ parametrizing the amount
of noise allowed on B. Goal: find encodings Ci = Ai⌦B
in Hn, with n a function of i, so that for a given ✏ there
is a function µ of i such that limi!1 µ = 0 and for any
i and E 2 E✏ there is F 2 Nµ(Ai, B) with (1). If this is
true for any ✏ < ✏

0

then we say that the code family has
threshold ✏

0

.
Class of noisy recoveries R⌘ ✓ B(Hn), with ⌘ quanti-

fying the noise level, and for each i a class E✏,µ ✓ B(Hn)
that encompasses both E✏ and Nµ(Ai, B). ✏ quanti-
fies generic noise, µ ’logical’ noise. Then as in (1) but
with R 2 R⌘, E 2 E✏,µ and F 2 E✏̄,µ̄, in such a way
that lim⌘!0

✏̄ = 0 and for ✏ and ⌘ below a threshold
limi!1 µ̄ = µ.

STABILIZERS

Given a system Hn
2

of n quits, subspace C defined by a
stabilizer S, a subgroup of the Pauli group P of operators
with �1 62 S. Namely, P =

Q
s2S(1 + s)/2. The decom-

position C = A ⌦ B is obtained by introducing another
subgroup of the Pauli group, the gauge group G, such
that its center is S, up to phases. A is then the subsys-
tem where G acts nontrivially and indeed generates the
full algebra of operators, and B the subsystem where it
acts trivially. We can recover the full algebra on B from
the group of ‘bare’ logical operators Z(G), the central-
izer of G. We choose a suitable set of representatives L
of Z(G)/S with 1 2 L.

We will deal with channels in B(Hn
2

) mapping states

⇢ !
X

i

Ki Qi(⇢)K
†
i ,

where Qi is a CPTP map with Kraus operators in the

gauge algebra, and Ki = p1/2i EiPi with pi � 0, Ei 2 P
and Pi a projector in the stabilizer algebra,

P
i piPi = 1.

We denote such a channel as {Ki}, thus ignoring the
gauge part, which is consistent with channel composition:
{Ki} � {Lj} = {KiLj}i,j . In our context a general noisy
channel takes the form

E = {pE(E)1/2 E}E2P . (2)

A class of noisy channels E✏ contains those with pE sat-
isfying certain constraints depending on ✏, in which case
we say that pE is ✏-good or E✏-good. We impose that
q(E)  p(E) for E 6= 1 and p ✏-good implies q ✏-good. E
will denote the set of all channels (2). We also consider
channels

N = {pE(E,L)1/2 EL}E2P,L2L. (3)

and let N denote the channel (2) constructed from the
marginal probability p̃N (E) :=

P
L pN (E,L). From a

class E✏ we construct a new one E✏,µ with elements such
that N 2 E✏ and

bad (N ) :=
X

L 6=1

X

E

pN (E,L)  µ.

N will denote the set of all channels (3). Observe that

fail (N )  bad (N ) + fail (N ).

ERROR-CORRECTION

Ideal error correction proceeds by first measuring the
stabilizer elements, thus projecting the system with
Pf :=

P
s2S (1 + f(s)s)/2, where f : S ! {1,�1} is

a group morphism known as the error syndrome. If
the error E 2 P occurs, the syndrome is SE, de-
fined by (SE)(s) := EsE†s. A certain Cf 2 P with
SCf = f is then applied, so that R = {CfPf}. Since
every E 2 P decomposes uniquely as E = CSEGL,
with G 2 G, L 2 L, we have F = {pE(E)1/2 CSEE} =

{pE(CfGL)1/2 GL}f,G,L. Ideal error correction fails with
probability

fail (E) :=
X

L 6=1

X

f,G

pE(CfGL).

Single-shot fault-tolerant quantum error correction
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Transversal gates	


No code admits a universal transversal set of gates	


Eastin & Knill ‘09	


Alternatives:	


•  Magic state distillation	


•  Gauge fixing	


•  Concatenation	


Bravyi & Kitaev ‘03	


Jochym-O’Connor & Laflamme ‘14	


Paetznick & Reichardt ‘13	




Quantum computations with any size, time and 
precision can be performed with a reasonable 
resource overhead if noise level is below a 
threshold value.	


Fault-tolerant quantum computation	


Often very high overhead 
or very low threshold	




Outline	


•  Quantum error correction	


•  Topological codes	


•  Gauge color codes	




Topological codes	


•  Physical qubits on a lattice	


•  Local check operators	


•  Global logical operators	


Kitaev ‘97	




Error threshold	


Low error density	
 High error density	


Large 
systems	


Information 
destroyed	


Perfect 
correction	


•  Phase transition! 	


•  Connects with classical statistical physics	




Topological order	


Ground states	


Excited states	


Gap	


•  A passive approach to quantum error correction?	




Topological order	


•  Gapped (local) quantum Hamiltonian	


•  Locally undistinguishable ground states	


•  Robust against deformations	


Single-shot fault-tolerant quantum error correction
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Information in a subsystem B of a subspace C = A⌦B
of H. Projector P , channel C(⇢) := P⇢P . A channel
E 2 B(H) is correctable if there exists a recovery channel
R with

R � E � C = F � C. (1)

for some F 2 B(C) with trivial action in B.
In practice class of channels E

n
✏ ✓ B(H), implic-

itly dependent on n, ✏ parametrizes a restriction on
the noise level and n indexes the Hilbert space, typi-
cally Hn := H⌦n

0

for some H
0

. We choose some class
Nµ(A,B) ✓ B(A⌦B) with µ parametrizing the amount
of noise allowed on B. Goal: find encodings Ci = Ai⌦B
in Hn, with n a function of i, so that for a given ✏ there
is a function µ of i such that limi!1 µ = 0 and for any
i and E 2 E✏ there is F 2 Nµ(Ai, B) with (1). If this is
true for any ✏ < ✏

0

then we say that the code family has
threshold ✏

0

.
Class of noisy recoveries R⌘ ✓ B(Hn), with ⌘ quanti-

fying the noise level, and for each i a class E✏,µ ✓ B(Hn)
that encompasses both E✏ and Nµ(Ai, B). ✏ quantifies
generic noise, µ ’logical’ noise. Then as in (1) but with
R 2 R⌘, E 2 E✏,µ and F 2 E✏̄,µ̄, in such a way that
lim⌘!0

✏̄ = 0 and for (✏, ⌘) within a certain neighborhood
of (0, 0) we have limi!1 µ̄ = µ.
Stabilizer codes. Given a system Hn

2

of n quits, sub-
space C defined by a stabilizer S, a subgroup of the
Pauli group P of operators with �1 62 S. Namely,
P =

Q
s2S(1 + s)/2. The decomposition C = A ⌦ B

is obtained by introducing another subgroup of the Pauli
group, the gauge group G, such that its center is S, up to



Topological order	


•  In 2D excitations are anyons	


•  Planar codes can be derived using 
anyon physics:	


Boundaries / 
condensation	


Twists / 	

symmetries	


Bombin ‘10	




Self-correction	


•  For D ≥	 4 all excitations can be extended objects	


Low temperature	
 High temperature	


Large 
systems	


Information 
destroyed	


Perfect 
preservation	


•  What about D = 2, 3? Open question	




Outline	


•  Quantum error correction	


•  Topological codes	


•  Gauge color codes	




Color codes	


Topology + transversality !	


•  2D: Clifford group     è Distillation	


•  D>2: Cnot + 	


•  3D     è Hadamard via ancilla |+>	


Demonstrated with 7 trapped ions	

Nigg et al ‘14	


Gauge Color Codes
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Color codes are topological stabilizer codes with unusual transversality properties. Here I show
that their group of transversal gates only depends on the spatial dimension, not the local geometry. I
also introduce a generalized, gauge version of color codes. In 3D they allow the e↵ectively transversal
implementation of a universal set of gates by gauge fixing, while error-dectecting measurements
involve only 4 or 6 qubits.

In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and

R
D

:=
� 1 0

0 e

2⇡i/2D

�

. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent

FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-

eralized form of color codes, gauge color codes [? ]. Just
as in 2D, it is possible to construct families of 3D gauge
color codes where the measurements for error correc-
tion only involve 4 or 6 qubits, see Fig. ??. Moreover,
using the gauge fixing technique [? ], a universal set



Dimensional restrictions	
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of H. Projector P , channel C(⇢) := P⇢P . A channel
E 2 B(H) is correctable if there exists a recovery channel
R with

R � E � C = F � C. (1)

for some F 2 B(C) with trivial action in B.
In practice class of channels E

n
✏ ✓ B(H), implic-

itly dependent on n, ✏ parametrizes a restriction on
the noise level and n indexes the Hilbert space, typi-
cally Hn := H⌦n

0

for some H
0

. We choose some class
Nµ(A,B) ✓ B(A⌦B) with µ parametrizing the amount
of noise allowed on B. Goal: find encodings Ci = Ai⌦B
in Hn, with n a function of i, so that for a given ✏ there
is a function µ of i such that limi!1 µ = 0 and for any

i and E 2 E✏ there is F 2 Nµ(Ai, B) with (1). If this is
true for any ✏ < ✏

0

then we say that the code family has
threshold ✏

0

.
Class of noisy recoveries R⌘ ✓ B(Hn), with ⌘ quanti-

fying the noise level, and for each i a class E✏,µ ✓ B(Hn)
that encompasses both E✏ and Nµ(Ai, B). ✏ quantifies
generic noise, µ ’logical’ noise. Then as in (1) but with
R 2 R⌘, E 2 E✏,µ and F 2 E✏̄,µ̄, in such a way that
lim⌘!0

✏̄ = 0 and for (✏, ⌘) within a certain neighborhood
of (0, 0) we have limi!1 µ̄ = µ.
Stabilizer codes. Given a system Hn

2

of n quits, sub-
space C defined by a stabilizer S, a subgroup of the
Pauli group P of operators with �1 62 S. Namely,
P =

Q
s2S(1 + s)/2. The decomposition C = A ⌦ B

is obtained by introducing another subgroup of the Pauli
group, the gauge group G, such that its center is S, up to
phases. A is then the subsystem where G acts nontrivially
and indeed generates the full algebra of operators, and
B the subsystem where it acts trivially. We can recover
the full algebra on B from the group of ‘bare’ logical op-
erators Z(G), the centralizer of G. We choose a suitable
set of representatives L of Z(G)/S with 1 2 L.
We will deal with channels in B(Hn

2

) mapping states

⇢ !
X

i

Ki Qi(⇢)K
†
i ,

where Qi is a CPTP map with Kraus operators in the

gauge algebra, and Ki = p1/2i EiPi with pi � 0, Ei 2 P
and Pi a projector in the stabilizer algebra,

P
i piPi = 1.

We denote such a channel as {Ki}, thus ignoring the
gauge part, which is consistent with channel composition:
{Ki} � {Lj} = {KiLj}i,j .
Error correction. Ideal error correction proceeds by
first measuring the stabilizer elements, thus projecting
the system with Pf :=

P
s2S (1 + f(s)s)/2, where f :

S ! {1,�1} is a group morphism known as the error
syndrome. If the error E 2 P occurs, the syndrome is
SE, defined by (SE)(s) := EsE†s. A certain Cf 2 P
with SCf = f is then applied, so that R = {CfPf}. In
our context a general noisy channel takes the form

E = {pE(E)
1/2 E}E2P . (2)

Since every E 2 P decomposes uniquely as E = CSEGL,
with G 2 G, L 2 L, we have F = {pE(E)

1/2 CSEE} =

{pE(CfGL)1/2 GL}f,G,L. Ideal error correction fails with
probability

fail (E) :=
X

L 6=1

X

f,G

pE(CfGL).
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Color codes are topological stabilizer codes with unusual transversality properties. Here I show
that their group of transversal gates only depends on the spatial dimension, not the local geometry. I
also introduce a generalized, gauge version of color codes. In 3D they allow the e↵ectively transversal
implementation of a universal set of gates by gauge fixing, while error-dectecting measurements
involve only 4 or 6 qubits.

In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and

R
D

:=
� 1 0

0 e

2⇡i/2D

�

. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].
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FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent
of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-
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Color codes are topological stabilizer codes with unusual transversality properties. Here I show
that their group of transversal gates only depends on the spatial dimension, not the local geometry. I
also introduce a generalized, gauge version of color codes. In 3D they allow the e↵ectively transversal
implementation of a universal set of gates by gauge fixing, while error-dectecting measurements
involve only 4 or 6 qubits.

In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and
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. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].
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FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent
of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-
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In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and
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. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].
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FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent
of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-
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Color codes are topological stabilizer codes with unusual transversality properties. Here I show
that their group of transversal gates only depends on the spatial dimension, not the local geometry. I
also introduce a generalized, gauge version of color codes. In 3D they allow the e↵ectively transversal
implementation of a universal set of gates by gauge fixing, while error-dectecting measurements
involve only 4 or 6 qubits.

In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and
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. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].
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FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent
of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-
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Color codes are topological stabilizer codes with unusual transversality properties. Here I show
that their group of transversal gates only depends on the spatial dimension, not the local geometry. I
also introduce a generalized, gauge version of color codes. In 3D they allow the e↵ectively transversal
implementation of a universal set of gates by gauge fixing, while error-dectecting measurements
involve only 4 or 6 qubits.

In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and
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. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].
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FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent
of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-
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Color codes are topological stabilizer codes with unusual transversality properties. Here I show
that their group of transversal gates only depends on the spatial dimension, not the local geometry. I
also introduce a generalized, gauge version of color codes. In 3D they allow the e↵ectively transversal
implementation of a universal set of gates by gauge fixing, while error-dectecting measurements
involve only 4 or 6 qubits.

In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and
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. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].
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FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent
of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-
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Héctor Bomb́ın
Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Ontario N2L 2Y5, Canada

Color codes are topological stabilizer codes with unusual transversality properties. Here I show
that their group of transversal gates only depends on the spatial dimension, not the local geometry. I
also introduce a generalized, gauge version of color codes. In 3D they allow the e↵ectively transversal
implementation of a universal set of gates by gauge fixing, while error-dectecting measurements
involve only 4 or 6 qubits.

In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and
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. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].
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FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent
of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-
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Color codes are topological stabilizer codes with unusual transversality properties. Here I show
that their group of transversal gates only depends on the spatial dimension, not the local geometry. I
also introduce a generalized, gauge version of color codes. In 3D they allow the e↵ectively transversal
implementation of a universal set of gates by gauge fixing, while error-dectecting measurements
involve only 4 or 6 qubits.

In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and

R
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0 e
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�

. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].
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FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent
of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-
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Color codes are topological stabilizer codes with unusual transversality properties. Here I show
that their group of transversal gates only depends on the spatial dimension, not the local geometry. I
also introduce a generalized, gauge version of color codes. In 3D they allow the e↵ectively transversal
implementation of a universal set of gates by gauge fixing, while error-dectecting measurements
involve only 4 or 6 qubits.

In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and
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. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent

FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-

eralized form of color codes, gauge color codes [? ]. Just
as in 2D, it is possible to construct families of 3D gauge
color codes where the measurements for error correc-
tion only involve 4 or 6 qubits, see Fig. ??. Moreover,
using the gauge fixing technique [? ], a universal set
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•  But fluxes and charges of dual codes are related!	


Single-shot fault-tolerant quantum error correction
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Conventional quantum error correcting codes require multiple rounds of measurements to detect
errors with enough confidence in fault-tolerant scenarios. Here I show that for suitable topological
stabilizer codes, such as gauge color codes, a single round is indeed enough. This feature is generic
and is related to self-correction in the corresponding quantum Hamiltonian model.

The development of efficient fault-tolerant quantum
computing techniques is essential: they provide the
means to deal with the decoherence and control impreci-
sions that are intrinsic to quantum systems, see e.g. [1].
Only the presence of such error sources prevents extend-
ing the ability to control small quantum systems for a
limited time to that of performing arbitrarily long, pre-
cise and large quantum computations.
A key element of fault-tolerant quantum computing is

error correction, which is intended to detect and elim-
inate errors in the system. Because error detection is
itself a noisy process, care has to be taken so that the
attempt to eliminate errors does not end up introduc-
ing more. This can be achieved [2] by performing mul-
tiple times the measurements from which errors are to
be inferred [3]. But this is costly, because longer times
and more operations lead themselves to more accumula-
tion of errors, with the overall effect of lowering the error
threshold, i.e. the amount of noise that the fault-tolerant
architecture can tolerate. This paper shows how certain
codes are robust against imperfections in error detection:
for them a single round of local measurements suffices.
Quantum error correcting codes keep information in

degrees of freedom not easily accessible to the environ-
ment. In operator quantum error-correction [4], quan-
tum information is stored in a subsystem B of a code
subspace C = A⊗B of the Hilbert space H representing
the noisy system. The code can be characterized by a
map C(ρ) := PρP on quantum states ρ in H, with P the
projector onto C. A noisy channel (quantum process) E
on H is correctable if, up to a suitable recovery operation
R, it has no effect on encoded quantum information, i.e.

R ◦ E ◦ C = F ◦ C. (1)

for some channel F on C with trivial action in B.

FIG. 1: The relationship between gauge (flux lines) and sta-
bilizer (branching points) negative generator eigenvalues.

In practice perfect error correction is not possible. In-
stead, the goal becomes to achieve asymptotically perfect
recovery in the limit of systems with a large number n
of identical subsystems. It is assumed that noise process
are somewhat local with respect to the subsystem struc-
ture, as is often the case in realistic scenarios under weak
coupling with the environment [5]. Thus one considers a
class Eϵ of channels on H, implicitly dependent on n and
with ϵ ≥ 0 characterizing the allowed amount of noise,
the noiseless case corresponding to ϵ → 0. Similarly there
is some class Nµ(A,B) of channels on A⊗B with µ ≥ 0
parametrizing the amount of noise allowed on B. The
goal is to find a family of encodings Ci = Ai ⊗B, with n
a function of i, so that for some ϵ there is a function µ of
i such that for any i and E ∈ Eϵ there is F ∈ Nµ(Ai, B)
satisfying (1), and limi→∞ µ = 0. If this is true for any
ϵ < ϵ0 then the code family has error threshold ϵ0.

In certain families of codes, which can be termed local,
the recovery operation can be performed in an effectively
local way, i.e. after a finite number of steps, each involv-
ing any number of parallel quantum operations acting
on disjoint subsystem sets with bounded cardinality, to-
gether with arbitrary processing of classical information
that can affect the choice of subsequent quantum oper-
ations —hence the term effective. Notable among lo-
cal codes [6] are topological stabilizer codes, see e.g. [7],
for which locality is geometric, classical processing effi-
cient [8, 9], error thresholds high [8, 10], and computa-
tional features rich [11–15].

The above discussion applies to ideal recovery oper-
ations. In fault-tolerant quantum computing, though,
the recovery process is itself noisy. Dealing in the most
proper way with this problem involves considering the
fault-tolerant quantum computing process as a whole. In
order to isolate the error correction part, here the prob-
lem will instead be phrased in terms of noisy channels.
This will be one of several simplifications, always with
the aim of making the results technically and conceptu-
ally transparent while at the same time keeping enough
structure so that they are compelling.

With this in mind, consider a class of noisy recoveries
Rη, with η quantifying the noise level, and for each i a
class Eϵ,µ that encompasses both Eϵ and Nµ(Ai, B): ϵ
quantifies generic noise, µ ‘logical’ noise afflicting irrecov-
erably encoded information. If error correction is to allow
arbitrarily large computations, (i) asymptotically logical
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Color codes are topological stabilizer codes with unusual transversality properties. Here I show
that their group of transversal gates only depends on the spatial dimension, not the local geometry. I
also introduce a generalized, gauge version of color codes. In 3D they allow the e↵ectively transversal
implementation of a universal set of gates by gauge fixing, while error-dectecting measurements
involve only 4 or 6 qubits.

In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and
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. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].
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FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent
of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-
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Color codes are topological stabilizer codes with unusual transversality properties. Here I show
that their group of transversal gates only depends on the spatial dimension, not the local geometry. I
also introduce a generalized, gauge version of color codes. In 3D they allow the e↵ectively transversal
implementation of a universal set of gates by gauge fixing, while error-dectecting measurements
involve only 4 or 6 qubits.

In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and
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. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].
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FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent
of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-
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Color codes are topological stabilizer codes with unusual transversality properties. Here I show
that their group of transversal gates only depends on the spatial dimension, not the local geometry. I
also introduce a generalized, gauge version of color codes. In 3D they allow the e↵ectively transversal
implementation of a universal set of gates by gauge fixing, while error-dectecting measurements
involve only 4 or 6 qubits.

In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and
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. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].
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FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent
of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-

	


•  We can now recover a universal set of transversal gates!	


	


•  Measurements can be made 6-local by measuring fluxes 
(gauge degrees of freedom), not charges directly	




Single-shot fault tolerant QEC	

	


•  Because syndrome measurements are faulty, they have to be 
repeated or large errors can be introduced when trying to 
do error correction	


•  Not for 3D gauge color codes! A small wrong ‘flux 
syndrome’ gives rise to wrong charge syndromes that are 
close!	


	


•  This is reminiscent of confinement…	




Single-shot fault tolerant QEC	


•  Codes that yield self-correcting topological order also are 
single-shot!	


	


•  For 3D gauge color codes, all operations (initialization, gates, 
error correction, measurements) can be made in constant 
time using only local quantum + global classical operations	


•  Fault-tolerance with constant time overhead	




Summary & discussion	


•  Topological codes are a natural tool to make quantum 
computation feasible	


•  3D gauge color codes have many interesting practical 
properties	


•  Error thresholds?	


•  What are the limitations in 2D?	


•  What about non-geometrical locality?	


•  Could there be related 3D self-correcting systems?	



