Topological approach to quantum error correction

Outline

- Quantum error correction
- Topological codes
- Gauge color codes

Simulating physics with (quantum) computers

Quantum computers

- Want: isolation + control
- Have: decoherence + imprecision
- Need: error correction

Error correction

 \mathcal{H}_i $\mathcal{H} = \left\{ - \right\}$ Ż

Locality of noise

• Errors are local

Encode in collective degrees of freedom

Transversal gates

- To compute we need unitary 'gates' on logical qubits
- Aim: preserve locality (do not spread errors)
- How: act on subsystems separately

Transversal gates

No code admits a universal transversal set of gates

Eastin & Knill '09

Alternatives:

- Magic state distillation Bravyi & Kitaev '03
- Gauge fixing Paetznick & Reichardt '13
- Concatenation Jochym-O'Connor & Laflamme '14

Fault-tolerant quantum computation

Quantum computations with any size, time and precision can be performed with a reasonable resource overhead if noise level is below a threshold value.

Often very high overhead or very low threshold

Outline

- Quantum error correction
- Topological codes
- Gauge color codes

Topological codes Kitaev '97

- Physical qubits on a lattice
- Local check operators
- Global logical operators

Error threshold

- Phase transition!
- Connects with classical statistical physics

Topological order

• A passive approach to quantum error correction?

Topological order

- Gapped (local) quantum Hamiltonian
- Locally undistinguishable ground states
- Robust against deformations

Topological order

- In 2D excitations are anyons
- Planar codes can be derived using anyon physics:

Self-correction

• For $D \ge 4$ all excitations can be extended objects

• What about D = 2, 3? Open question

Outline

- Quantum error correction
- Topological codes
- Gauge color codes

Color codes

Topology + transversality !

D: Clifford group → Distillation

• D>2: Cnot +
$$R_D := \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^D} \end{pmatrix}$$

BD → Hadamard via ancilla |+>

Dimensional restrictions

Bravyi & Koenig '13

 In topological stabilizer codes only some gates can be transversal depending on the dimension

$$\mathcal{P}_D := \{ U \,|\, U \mathcal{P} U^{\dagger} \subseteq \mathcal{P}_{D-1} \}, \qquad \mathcal{P}_1 := \mathcal{P}$$

Gottesman & Chuang '99

Color codes

Difficulties of 3D color codes:

- Many-body measurements of 20+ qubits
- Ancilla encoded qubit for *H* gate

Gauge Color codes

Difficulties of 3D color codes:

- Many-body measurements of 28+ qubits
- NO Ancilla encoded qubit for H gate
 - Single-shot FT QEC
 - Constant time overhead

3D color codes

For a given geometry, two dual codes

3D color codes

But fluxes and charges of dual codes are related!

 The branching points of fluxes in a code correspond to charges in the dual code

3D color codes

- For some boundary conditions, processes involving only fluxes (without branching points) cannot give rise to errors
- We can consider codes were only charges are measured

3D gauge color codes

• The result is a subsystem code, with fluxes corresponding to gauge degrees of freedom

3D gauge color codes

- For suitable boundary conditions:
 - Hadamard is transversal in the gauge code
 - The codes have the same logical operators
- We can jump between them!

3D gauge color codes

• We can now recover a universal set of transversal gates!

 Measurements can be made 6-local by measuring fluxes (gauge degrees of freedom), not charges directly

Single-shot fault tolerant QEC

- Because syndrome measurements are faulty, they have to be repeated or large errors can be introduced when trying to do error correction
- Not for 3D gauge color codes! A small wrong 'flux syndrome' gives rise to wrong charge syndromes that are close!

• This is reminiscent of confinement...

Single-shot fault tolerant QEC

 Codes that yield self-correcting topological order also are single-shot!

- For 3D gauge color codes, all operations (initialization, gates, error correction, measurements) can be made in constant time using only local quantum + global classical operations
- Fault-tolerance with constant time overhead

Summary & discussion

- Topological codes are a natural tool to make quantum computation feasible
- 3D gauge color codes have many interesting practical properties
- Error thresholds?
- What are the limitations in 2D?
- What about non-geometrical locality?
- Could there be related 3D self-correcting systems?