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Simulating physics with
(quantum) computers




Quantum computers

® Want: isolation + control
® Have: decoherence + imprecision

® Need: error correction
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Error correction

Code Subspace




Locality of noise

® Errors are local
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® Encode in collective degrees of freedom
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Transversal gates

® To compute we need unitary ‘gates’ on logical qubits
® Aim: preserve locality (do not spread errors)

® How:act on subsystems separately
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Transversal gates

No code admits a universal transversal set of gates

Eastin & Knill ‘09

Alternatives:

® Magic state distillation Bravyi & Kitaev ‘03
. .
Gauge ﬁXIng Paetznick & Reichardt ‘13

o .
Concatenation Jochym-O’Connor & Laflamme ‘14



Fault-tolerant quantum computation

Quantum computations with any size, time and
precision can be performed with a reasonable

resource overhead if noise level is below a
threshold value.

Often very high overhead
or very low threshold
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Topological codes

® Physical qubits on a lattice
® Local check operators

® Global logical operators
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Error threshold

Low error density High error density
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® Phase transition!

® Connects with classical statistical physics



Topological order

® A passive approach to quantum error correction?

Excited states
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Topological order

H

® Gapped (local) quantum Hamiltonian
® Locally undistinguishable ground states

® Robust against deformations



Topological order

® In 2D excitations are anyons /T \7 /
® Planar codes can be derived using / \ l
anyon physics:

Boundaries / Twists /
condensation symmetries

Bombin ‘10




Self-correction

® For D 2 4 all excitations can be extended objects

Low temperature High temperature
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® What about D = 2, 3? Open question
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Color codes

Topology + transversality !

® 2D:Clifford group =» Distillation

1 0
® D>2:Cnot+ Rp = (0 o2mi/2P )

® 3D = Hadamard via ancilla [+>

Demonstrated with 7 trapped ions
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Nigg et al ‘14




Dimensional restrictions |
Bravyi & Koenig ‘| 3

® In topological stabilizer codes only some gates can be

transversal depending on the dimension

Pp :={U|UPU' CPp_1}, P1:=P

Gottesman & Chuang ‘99




Color codes

Difficulties of 3D color codes:
® Many-body measurements of 20+ qubits

® Ancilla encoded qubit for H gate



Gauge Color codes

Difficulties—of 3D color codes: 6
“ust
® Many-body measurements of)@'-r qubits

NO Ancilla encoded qubit for H gate

® Single-shot FT QEC

® Constant time overhead



3D color codes

® For a given geometry, two dual codes

code A code B
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3D color codes

® But fluxes and charges of dual codes are related!
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® The branching points of fluxes in a code correspond to
charges in the dual code
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3D color codes

® For some boundary conditions, processes involving only
fluxes (without branching points) cannot give rise to

errors

® We can consider codes were only charges are measured
code A code B code C

U



3D gauge color codes

® The result is a subsystem code, with fluxes
corresponding to gauge degrees of freedom
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3D gauge color codes

® For suitable boundary conditions:
® Hadamard is transversal in the gauge code
® The codes have the same logical operators

® We can jump between them!

7 A <— direct

C --=> gauge fixing



3D gauge color codes

® We can now recover a universal set of transversal gates!
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gauge fixing

® Measurements can be made 6-local by measuring fluxes
(gauge degrees of freedom), not charges directly



Single-shot fault tolerant QEC

® Because syndrome measurements are faulty, they have to be
repeated or large errors can be introduced when trying to
do error correction

® Not for 3D gauge color codes! A small wrong ‘flux
syndrome’ gives rise to wrong charge syndromes that are
close!

® This is reminiscent of confinement...



Single-shot fault tolerant QEC

® Codes that yield self-correcting topological order also are
single-shot!

® For 3D gauge color codes, all operations (initialization, gates,
error correction, measurements) can be made in constant
time using only local quantum + global classical operations

® Fault-tolerance with constant time overhead



Summary & discussion

Topological codes are a natural tool to make quantum
computation feasible

3D gauge color codes have many interesting practical
properties

Error thresholds!?
What are the limitations in 2D?
What about non-geometrical locality?

Could there be related 3D self-correcting systems!?



