"Entanglement Entropy" and phase transition
in classical statistical models  1.0u0sni Nishino (Kobe Univ)

Andrej Gendiar (Slovak Acd. Sci.)
Ising model (simulated by DMRG) Roman Krcmar (Slovak Acd. Sci.)
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There are a number of Entropies: an example
Entropy of "quenched” thermal configuration

Matsueda showed that there is an
universality in the singular value distribution
and corresponding “entropy” of a thermal

snapshot of 2D spin system.
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Fig. 10. The eigenvalue distribution p(w) for the 3-states Potts model of
the system size N = 100 at 7" = 100.0, where Aw = 0.04. We also plot the
RMT curve for N — co with 02 = 2/9 and Q = 1 as a solid line. The inset is

the enlarged view around the upper bound A, = 8/9 of the RMT curve.

+ analytic approach
by Okunishi et al.
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"Entanglement Entropy" in statistical models

Ising model (simulated by D
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something nearly flat

Low Temperature nearly Critical

Planer lattice = Hyperbolic

vertex model
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Quantum - Classical Correspondence

Path integral representation (?) for
1D Quantum System, such as Spin Chain,
corresponds to 2D, or 1+1 D, Classical System.

>> Mathematical structure around Entanglement
can be "exported” to 2D Classical lattice models,
such as 2D classical Ising Model and its Critical

Phenomena.

That’'s all. Anhy Questions?

Your major is Quantum Information....
OK, then you are either Schroedinger’s CAT or DOG. |




Mapping: from 1D Quantum to 2D Classical
1D Transverse Field Ising Model (1D Quantum)
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Partition function at finite temperature Trotte r-S uzZu ki
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Transfer Matrix = imaginary time evolution, which is written in the form
of the product of Local operators, i.e. local weights)

T, = e B/Nhothyth+-) I o~ (B/N) h,
i=even

T. = e B/N)thythst-) _ I o~ (B/N) R,
1=odd

>> Square Lattice Ising Model (2D Classical)



Matrix elements of the Local Weight (= the Local imaginary Time Evolution)

(This is a kind of 16-vertex weight)
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Partition Function, as a trace atrices
Z =Tr(T,T,
is equivalent to the spin configuration sum on the product of local
weights “W” over the 2D chess board lattice.
W W W W
Te — WOW2W4 '”WM—Z W w W
TO — W1W3W5WM_1 w w w w
W W W
Already we have reached a classical W W W W
(=statistical) model defined on the square lattice, " - -
although it is chess board like.
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Both 1D quantum and 2D classical Ising models have been represented by a
subset of the 16 vertex model. Thus it is natural that the ground-state phase
transition of the former shows the same universality with the order-disorder
transition of the latter at the finite temperature.



Consider the Square Lattice Ising Model, | T B
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Let us divide the whole lattice into lower half, say the past, and the upper half,
the future. (In the picture a Transfer Matrix joints these two.)

Taking the configuration sum for all the spins other than those on the T.M.,
one gets the eigenvectors of the Transfer Matrix.

Identifying these eigenvectors as Quantum Bra and Ket states, one can
construct Density Matrix, by partially tracing out those spins on the right side
of the horizontal spin row.

Density Matrix appears on any cut (or any boundary) of a given 2D (or even in
any dimensional) classical statistical model.
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Identifying the eigenvalues of the density matrix (= Square of Singular Values)
as probability, one can define an Entropy, which is nothing but the
Entanglement Entropy as long as one speaks about its mathematical structure.

(***) Note that we are considering thermal statistical average. | don’t know any

experimental procedure to measure (or at least observe the effect of) the E.E.
thus defined.

>> What | speak about, is, some profit in numerical analyses.



Besides, Baxter reached the Density Matrix in 1968!!!
(He used IBM system360!)

[*] R.J.Baxter J. Math. Phys. 9, 650 (1968)

[*] R.J.Baxter: "Exactly Solved Models in Statistical Mechanics”,
e o http://physics.anu.edu.au/theophys/baxter _book.php

The Corner Transfer formalism by Baxter is essentially the
same as the Density Matrix Renormalization Group method.

Analytic Formulation for E.E. can be obtained from those
singular values obtained within the CTM formulation.

Numerically: to obtain Correlation Length is rather hard.

to obtain E.E is rather easy, if one uses CTM formulation.

from the area low, one can obtain the correlation length.
Jargon TM



Ising model on Hyperbolic Lattice

flat lattice Hyperbolic Lattice <<< These two lattices are too different.
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Ising model on the Hyperbolic lattice shows 2nd order phase transition.
....There are several thermodynamic quantities.

....It is not easy to understand what is going on at Tc.

Magnetization:
easy to obtain.
Specific Heat: rather hard to obtain. o S
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Entanglement Entropy

Tattice consists of upper and lower halves.
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Let us obtain the E.E, which corresponds to a straight cut from the center
to any border of the system.



n: average distance between “red points”.
Note that the curvature radius of the lattice is proportional to -1/n.
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Due to the hyperbolic nature of the lattice, correlation length is limited
by the average distance between red points.
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The calculate E.E certainly captures the length.

That’'s all. Anhy Questions?



>> Mathematical structure around Entanglement
can be “"exported” to 2D Classical lattice models,
such as 2D classical Ising Model and its Critical
Phenomena.

>>> Next Speaker >>>
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