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What happens when combining Quantum Mechanics and General Relativity?

[Quantum mechanics (h)] = (AX)-(MAV) > h/2
[Special Relativity (C)] > AV < C
(AX) > h/(2MC) Compton

wavelength

[General Relativity (G)] > M < AXC?/(2Gy)

Planck

(AX) 2 NG/CI2 = Ly |

. We are ignorant of
P a length shorter than L,




Canonical Tensor Model = Theory of dynamical fuzzy space [N. Sasakura, 2011]

Fuzzy space is defined by functions {f, f,, .., f\} and the product, f xf,.
N = #[functions] = #["points” in space]
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Time flow

H ”
(Ha) = ""space-time




Canonical Tensor Model [N. Sasakura, 2011]
Our knowledge is quite limited...

N=1: General Relativity in minisuperspace [N. Sasakura and Y.S., 2014]
N=2: Locality is favoured [N. Sasakura, 2013]

Difficulty is tied to much DOF of M, (a=],...,N).
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Statistical system on random networks [N. Sasakura and Y.S., 2014]
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match
Phase transition line - = Boundary of Hamiltonian flow




Canonical Tensor Model [N. Sasakura, 2011]

Time flow
Hamiltonian:
O(N) & Dilation
H = NGH + N[ab]J[ab] + ND
where Fuzzy space
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H, =(1/2) Py PLyeM g  Generator for time flow

J[ab] = (pachbcd - prdMaCd)/4 O(N) genera’ror

_ D = (1/6) MypPabe  Dilation generator -/

Poissons bracket:

Mo Paest = 0 440 1. O ¢ + perm. of (def)




Hamiltonian vector flow of N=2 model [N. Sasakura and Y.S., 2014]
Gauge fixing:
Pn=1L1 Puy=0 Ppo=x Pyy=vy

M,P) are real & symmetric
Hamiltonian vector flow: [(M.P) Y ]

H oc A(X,Y) a/aX + B(X,Y) a/ay [A(x,y) & B(x,y) are functions]




Hamiltonian vector flow of N=2 model [N. Sasakura and Y.S., 2014]

H oc A(x,y) 9/0x + B(x,y) o/dy
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Statistical systems on random network [N. Sasakura and Y.S., 2014]

Grand-type partition function:

N
Z(M,1) = de1 dd, exp[-P P, +tM, D P D ]

O(N) and dilation invariance:

Z(L(M),t) = Z(M,1)

Z(e°M, e 9t) = Z(M,1)

L(M)ace - L 'L ,I_ 'Maé
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Generate statistical system (M) on random network (Feynman graph):
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Statistical systems on random network [N. Sasakura and Y.S., 2014]

Grand-type partition function:
N
Z(M,1) = jdl'l1 dd, exp[-P P, +tM, D P D ]
O(N) and dilation invariance:

Z(L(M),1) = Z(M,1) LM)ace = LagbecbeeMacs

Z(e°M, e 9t) = Z(M,1)

Generate statistical system (M) on random network (Feynman graph):

/ Ex.) N=2 (Ising model)
X

T
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Statistical systems on random network [N. Sasakura and Y.S., 2014]

To check thermodynamic properties, introduce partition function:

(o0

2 0Z,(M)

N=

00 N
Z (/) ST, (Mg @, P, D) e PePe]

IR

Z(M,1)

Define the free energy per vertex (n):
F2n = —(1/2n) log [ZZn(M)] [Z,, vanishes for n odd]

For N=2 (Ising model), check the behaviour of f,,
in the thermodynamic limit, n = co.

Mlll - 1, MHZ - O, M122 = X, M222 = y (Gauge ﬁxmg)




Statistical systems on random network [N. Sasakura and Y.S., 2014]

f,.(x,y) = -(1/2n) log[Z,,(x,y)]
Y

Phase transition line
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f,.(x,y) = -(1/2n) log[Z,,(x,y)]

Phase transition line
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Statistical systems on random network [N. Sasakura and Y.S., 2014]

f,.(x,y) = -(1/2n) log[Z,,(x,y)]

Phase transition line
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Conclusion

[N=2 canonical tensor model] [Ising model on random networks]
Hamiltonian flow: Free energy:
H oc A(x,y) 9/3x + B(x,y) a/dy f(x,y) = lim -(1/2n) log[Z,,(x,y)]
n-> o0
Y] AN
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Implication:
RG-like procedure may exist in Ising model on random networks




Large-N (#[points] are large) canonical tensor model
can be described by statistical systems on Random networks?

Works!
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Exact solutions to the Wheeler-DeWitt equation

can be found in the language of random networks
[work in progress with G. Narain and N. Sasakurd]

Haw =J[ab]w =Dw - O







