Ising model on random networks and canonical tensor model

Yuki Sato

(Univ. of the Witwatersrand)

N. Sasakura, Y.S., PTEP 2014 (2014) 5, 053B03.

N. Sasakura, Y.S., 1402.0740 [hep-th] (accepted in SIGMA).

What happens when combining Quantum Mechanics and General Relativity?

Canonical Tensor Model = Theory of dynamical fuzzy space [N. Sasakura, 2011]

Fuzzy space is defined by functions $\{f_1, f_2, ..., f_N\}$ and the product, $f_a \star f_b$.

N = #[functions] = #["points" in space]

Canonical Tensor Model [N. Sasakura, 2011]

Our knowledge is quite limited...

N=1: General Relativity in minisuperspace [N. Sasakura and Y.S., 2014]

N=2: Locality is favoured [N. Sasakura, 2013]

Difficulty is tied to much DOF of M_{abc} (a=1,...,N).

---- Overcome

Statistical system on random networks [N. Sasakura and Y.S., 2014]

Statistical system on random network

Canonical tensor model

Canonical Tensor Model [N. Sasakura, 2011]

Our knowledge is quite limited...

N=1: General Relativity in minisuperspace [N. Sasakura and Y.S., 2014]

N=2: Locality is favoured [N. Sasakura, 2013]

Difficulty is tied to much DOF of M_{abc} (a=1,...,N).

----- Overcome

Statistical system on random networks [N. Sasakura and Y.S., 2014]

Ising model on random network

match

Phase transition line

Boundary of Hamiltonian flow

Hamiltonian:

$$H = N_a H_a + N_{[ab]} J_{[ab]} + ND$$

where

Fuzzy space

$$H_a = (1/2) P_{abc} P_{bde} M_{cde}$$
 Generator for time flow

$$H_a = (1/2) P_{abc} P_{bde} M_{cde}$$
 Generator for time flow
$$J_{[ab]} = (P_{acd} M_{bcd} - P_{bcd} M_{acd})/4$$
 o(N) generator

$$D = (1/6) M_{abc} P_{abc}$$
 Dilation generator

Poisson's bracket:

$$\{M_{abc}, P_{def}\} = \delta_{ad} \delta_{be} \delta_{cf} + perm. of (def)$$

Hamiltonian vector flow of N=2 model [N. Sasakura and Y.S., 2014]

Gauge fixing:

$$P_{111} = 1$$
, $P_{112} = 0$, $P_{122} = x$, $P_{222} = y$

 $H \propto A(x,y) \frac{\partial}{\partial x} + B(x,y) \frac{\partial}{\partial y}$

Hamiltonian vector flow:

[(M,P) are real & symmetric]

[A(x,y) & B(x,y) are functions]

Boundary of flow

Grand-type partition function:

$$Z(M,t) = \int_{d=1}^{N} d\Phi_{d} \exp[-\Phi_{a}\Phi_{a} + tM_{abc}\Phi_{a}\Phi_{b}\Phi_{c}]$$

O(N) and dilation invariance:

$$Z(L(M),t) = Z(M,t)$$

$$L(M)_{ace} = L_{a\acute{a}}L_{c\acute{c}}L_{e\acute{e}}M_{\acute{a}\acute{c}\acute{e}}$$

$$Z(e^{\sigma}M, e^{-\sigma}t) = Z(M,t)$$

Generate statistical system (M) on random network (Feynman graph):

Grand-type partition function:

$$Z(M,t) = \int_{d=1}^{N} d\Phi_{d} \exp[-\Phi_{a}\Phi_{a} + tM_{abc}\Phi_{a}\Phi_{b}\Phi_{c}]$$

O(N) and dilation invariance:

$$Z(L(M),t) = Z(M,t)$$

$$Z(e^{\sigma}M, e^{-\sigma}t) = Z(M,t)$$

$$L(M)_{ace} = L_{a\acute{a}}L_{c\acute{c}}L_{e\acute{e}}M_{\acute{a}\acute{c}\acute{e}}$$

Generate statistical system (M) on random network (Feynman graph):

$$M_{abc} = \sum_{i} R_{ai} R_{bi} R_{ci} e^{H\sigma_{i}}$$

$$(R^TR)_{ii} = e^{J\sigma_i\sigma_j}$$
 $(J \ge 0)$

To check thermodynamic properties, introduce partition function:

$$Z(M,t) \approx \sum_{n=0}^{\infty} t^{n} Z_{n}(M)$$

$$= \sum_{n=0}^{\infty} t^{n} [(1/n!) \int_{d=1}^{N} d\Phi_{d} (M_{abc} \Phi_{a} \Phi_{b} \Phi_{c})^{n} e^{-\Phi_{e} \Phi_{e}}]$$

Define the free energy per vertex (n):

$$f_{2n} = -(1/2n) \log[Z_{2n}(M)]$$
 [Z_n vanishes for n odd]

For N=2 (Ising model), check the behaviour of f_{2n} in the thermodynamic limit, $n \rightarrow \infty$.

$$M_{111} = 1$$
, $M_{112} = 0$, $M_{122} = x$, $M_{222} = y$ (Gauge fixing)

$$f_{2n}(x,y) = -(1/2n) \log[Z_{2n}(x,y)]$$

Phase transition line

Conclusion

[N=2 canonical tensor model]

Hamiltonian flow:

$$H \propto A(x,y) \frac{\partial}{\partial x} + B(x,y) \frac{\partial}{\partial y}$$

[Ising model on random networks]

Free energy:

$$f(x,y) = \lim_{n \to \infty} -(1/2n) \log[Z_{2n}(x,y)]$$

Implication:

RG-like procedure may exist in Ising model on random networks

Large-N (#[points] are large) canonical tensor model can be described by statistical systems on Random networks?

Exact solutions to the Wheeler-DeWitt equation can be found in the language of random networks [work in progress with G. Narain and N. Sasakura]

$$H_a \psi = J_{[ab]} \psi = D \psi = 0$$