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Introduction
Entanglement properties in 1D quantum systems!!

Entanglement properties in 2D quantum systems??

j!gi. Thus, the aim in the following is to compute the
entropy of entanglement, Eq. (1), for the state j!gi ac-
cording to bipartite partitions parametrized by L,

SL ! "tr#!Llog2!L$; (4)

where !L ! tr "BBL
j!gih!gj is the reduced density matrix

for BL, a block of L spins. The motivation behind the
present approach is straightforward: by considering the
entanglement SL of a spin block as a function of its size L,
and by characterizing it for large L, one expects to
capture the large-scale behavior of quantum correlations
at a critical regime.

We start off with a description of the calculations, to
then move to the analysis and discussion of the results, a
summary of which is provided by Fig. 1. The XXZ model,
Eq. (2), can be analyzed by using the Bethe ansatz [15].
We have numerically determined the ground state j!gi of
HXXZ for a chain of up to N % 20 spins, from which SL
can be computed. We recall that in the XXZ model, and
due to level crossing, the nonanalyticity of the ground-
state energy characterizing a phase transition already
occurs for a finite chain. Correspondingly, already for a
chain of N % 20 spins it is possible to observe a distinct,
characteristic behavior of SL depending on whether the
values ##;"$ in Eq. (2) belong or not to a critical regime.

The XY model, Eq. (3), is an exactly solvable model
(see for instance [13]) and this allows us to consider an
infinite chain, N ! 1. The calculation of SL, as sketched
next, also uses the fact that the ground state j!gi of the
chain and the density matrices !L for blocks of spins are
Gaussian states that can be completely characterized by
means of certain correlation matrix of second moments.

For each site l of the N-spin chain, we consider two
Majorana operators, c2l and c2l&1, defined as

c2l !
 

Yl"1

m%0

#z
m

!

#x
l ; c2l&1 !

 

Yl"1

m%0

#z
m

!

#y
l : (5)

Operators cm are Hermitian and obey the anticommuta-
tion relations fcm; cng % 2$mn. Hamiltonian HXY can be
diagonalized by first rewriting it in terms of these new
variables, HXY#f#%

l g$ ! HXY#fcmg$, and by then canoni-
cally transforming the operators cm. The expectation
value of cm when the system is in the ground state, i.e.,
hcmi ! h!gjcmj!gi, vanishes for all m due to the Z2
symmetry ##x

l ;#
y
l ;#

z
l $ ! #"#x

l ;"#y
l ;#

z
l $8l of the ori-

ginal Hamiltonian HXY . In turn, the expectation values
hcmcni % $mn & i$mn completely characterize j!gi, for
any other expectation value can be expressed, through
Wick’s theorem, in terms of hcmcni. Matrix $ reads [16]
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!
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"
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(6)

with real coefficients gl given, for an infinite chain
(N ! 1), by

gl %
1

2&

Z 2&

0
d'e"il' a cos'" 1" ia( sin'

ja cos'" 1" ia( sin'j : (7)

From Eqs. (6) and (7) we can extract the entropy SL
of Eq. (4) as follows. First, from $, and by eliminating
the rows and columns corresponding to those spins of the
chain that do not belong to the block BL, we compute the
correlation matrix of the state !L, namely $mn & i#$L$mn,
where

$L %

2

6
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%1"L ' ' ' ' ' ' %0
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: (8)

Now, let V 2 SO#2L$ denote an orthogonal matrix that
brings $L into a block-diagonal form [19], that is
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−

FIG. 1. Noncritical entanglement is characterized by a satu-
ration of SL as a function of the block size L: noncritical Ising
chain (empty squares), HXY#a % 1:1;( % 1$; noncritical XXZ
chain (filled squares), HXXZ## % 2:5;" % 0$. Instead, the en-
tanglement of a block with a chain in a critical model displays
a logarithmic divergence for large L: SL ( log2#L$=6 (stars) for
the critical Ising chain, HXY#a % 1;( % 1$; SL ( log2#L$=3
(triangles) for the critical XX chain with no magnetic field,
HXY#a % 1;( % 0$; in a finite XXX chain of N % 20 spins
without magnetic field (diamonds), HXXZ## % 1;" % 0$, SL
combines the critical logarithmic behavior for low L with a
finite-chain saturation effect. We have also added the lines
)#c& "cc$=6*)log2#L$ & &* [cf. Eq. (12)] both for free conformal
bosons (critical XX model) and free conformal fermions (criti-
cal Ising model) to highlight their remarkable agreement with
the numerical diagonalization.

P H Y S I C A L R E V I E W L E T T E R S week ending
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G. Vidal et al. PRL 90, 227902 (2003)

XY(a =�
, � = 0)

XY(a = 1, � = 1)
XXZ(� = 1,� = 0)

XXZ(� = 2.5,�
= 0)

XY(a = 1.1, � = 1)

XXZ model under magnetic !eld

XY model under magnetic !eld

1D gapped systems: EE converges to some value.
1D critical   systems: EE diverges logarithmically with L.
                                           coefficient is related to the central charge.

BAL



Preliminaries: re!ection symmetric case

Subsystem

A
Subsystem

B

Re#ection symmetryPre-Schmidt decomposition
|�� =
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Overlap matrix

Useful fact
If                                    and       is real symmetric matrix,

where        are the eigenvalues of      .

M [A] = M [B] = M M

S = �
�

�

p� ln p�, p� =
d2

��
� d2

�

d� M

J. Phys. A, 43, 255303 (2010)

Re!ection symmetry M [A] = M [B] = M
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VBS (Valence-Bond-Solid) state

Valence bond = Singlet pair

AKLT (Affleck-Kennedy-Lieb-Tasaki) model
I. Affleck, T. Kennedy, E. Lieb, and H. Tasaki, PRL 59, 799 (1987).

H =
�

i

�
�Si · �Si+1 +

1
3

�
�Si · �Si+1

�2
�

Ground state: VBS state

(S = 1)

Valence bond

S = 1

- Exact unique ground state; S=1 VBS state
- Rigorous proof of the “Haldane gap”
- AFM correlation decays fast exponentially

(projection)



VBS (Valence-Bond-Solid) state

VBS state = Singlet-covering state

2D hexagonal lattice2D square lattice

MBQC using VBS state
T-C. Wei, I. Affleck, and R. Raussendorf, Phys. Rev. Lett.106, 070501 (2011).
A. Miyake, Ann. Phys. 326, 1656 (2011).



VBS (Valence-Bond-Solid) state

VBS state = Singlet-covering state

Schwinger boson representation
| �� = a†|vac�, | �� = b†|vac�

Valence bond solid (VBS) state
|VBS� =

�

�k,l�

�
a†kb†l � b†ka†l

�
|vac�

n(b)
k = b†kbk

n(a)
k = a†kak

0 1 2 3 4
0

1

2

3

4

S=0 1/2 1 3/2 2

a†kak + b†kbk = 2Sk



VBS (Valence-Bond-Solid) state

2D hexagonal lattice2D square lattice

Subsystem BSubsystem A Subsystem BSubsystem A

Subsystem

A
Subsystem

B

Re#ection symmetry



VBS (Valence-Bond-Solid) state

Subsystem BSubsystem A

|VBS� =
�

�k,l�

�
a†kb†l � b†ka†l

�
|vac�

=
�

{�}

|�[A]
� � � |�[B]

� �

{�} =
�
�1, · · · ,�|�A|

�

�i = ±1/2Auxiliary spin: 
#bonds on edge: |�A|

- Local gauge transformation

- Re#ection symmetry

Overlap matrix
M{�},{�} 2|�A| � 2|�A|: matrix

Each element can be obtained by Monte Carlo calculation!!
Phys. Rev. B, 84, 245128 (2011)SU(N) case can be also calculated.

cf. H. Katsura, arXiv:1407.4262



Entanglement properties

  - Entanglement entropy
  - Entanglement spectrum
  - Nested entanglement entropy



Entanglement properties of 2D VBS states

VBS state = Singlet-covering state

2D hexagonal lattice2D square lattice

Subsystem BSubsystem A Subsystem BSubsystem A
Lx

Ly

PB
C

OBC



Entanglement entropy of 2D VBS states
cf. Entanglement entropy of 1D VBS states

|VBS� =
N�

i=0

�
a†i b

†
i+1 � b†ia

†
i+1

�S
|vac�

S=1 

S=3 

S=4 

S=6 

S=8 

S=2 

H. Katsura, T. Hirano, and Y. Hatsugai, PRB 76, 012401 (2007).

S = ln (# Edge states)

Subsystem BSubsystem A



Entanglement entropy of 2D VBS states

2D hexagonal lattice2D square lattice

Subsystem BSubsystem A Subsystem BSubsystem A
Lx

Ly

PB
C 

or
 O

BC

OBC

S
|�A| = ln 2� �

�1D = 0
�square > �hexagonal

� � 0

�square > �hexagonal
#bonds on edge: |�A|



Entanglement spectra of 2D VBS states

LOU, TANAKA, KATSURA, AND KAWASHIMA PHYSICAL REVIEW B 84, 245128 (2011)

FIG. 3. (Color online) Entanglement spectra of the (left) square
and (right) hexagonal VBS states with cylindrical geometry (PBC).
In both cases, Ly = 16 and Lx = 5, in which case results have
converged to the two-dimensional limit. The ground-state energy of
HE is denoted by λ0. The total spins S of the states are marked by
different symbols.

to boundary spin correlations and EE is associated with a
group of elemental valence bond loops mentioned above,
each connecting two nearest-neighbor boundary spins. In
a lattice with rectangular geometry (OBC), the number of
such elemental loops is always 1 less than the number of
boundary sites Ly . As a result, the leading correction to
entropy per boundary spin is proportional to (Ly − 1)/Ly ,
which approaches 1 in the thermodynamic limit. Accordingly,
we expect that the entanglement entropy converges slowly
following the function 1/Ly , as observed in Fig. 2.

For a lattice wrapped on a cylinder (PBC), winding loops
associated with periodic boundary provide extra spin-spin
correlations to the system. The EE in a finite system is lower
than the result in the thermodynamic limit due to the fact
that such winding valence bond loops are more prominent
in a smaller lattice compared with those in a larger one.
Furthermore, amplitudes associated with winding loops decay
exponentially fast according to the number of boundary spins
Ly , which is of the same order of winding loops’ length. As a
result, we observe a exponentially converging behavior of the
entanglement entropy in a PBC lattice.

B. Entanglement spectrum

Let us now consider the ES defined as a set of eigenvalues
of the entanglement Hamiltonian HE := − ln ρ̂A. In a system
with PBC, we are able to study the ES as a function of mo-
mentum in the y direction (k in Fig. 3). As shown in Fig. 3, the
ES obtained from the square (hexagonal) VBS state resembles
the spectrum of the spin-1/2 antiferromagnetic (ferromagnetic)
Heisenberg chain. The reason for the dependence of the ES on
the lattice structure is as follows: Although both the square and
hexagonal lattices are bipartite, neighboring boundary spins
belong to the different sublattices in the case of the square VBS
state. As a result, the entanglement Hamiltonian is reminiscent
of the AFM Heisenberg chain. In contrast, in the hexagonal
lattice, all boundary spins belong to the same sublattice, hence

the FM spectrum appears. The lowest-lying modes in the
left panel can be identified as the des Cloizeaux-Pearson
spectrum in the AFM Heisenberg chain.24 In the right panel,
the excitations with the total spin S = 7 look like the ordinary
spin-wave spectrum in the FM Heisenberg chain. In fact, due
to the translational symmetry in the y direction, the Bloch
theorem applies and the single-magnon states in the FM chain
are exact eigenstates of the RDM for the hexagonal VBS state.

C. Nested entanglement entropy

In order to further establish the correspondence between
the holographic spin chain and the Hamiltonian for the
Heisenberg chain, we introduce a measure, which we call
nested entanglement entropy (NEE), and study its scaling
properties. One might think that the finite-size scaling analysis
of the ground-state energy λ0 is sufficient to reveal the CFT
structure in the holographic spin chain. However, there is
a subtle point here. The spectrum of the RDM can only
tell us that the entanglement Hamiltonian can be expressed
as HE = βeffHhol with the Hamiltonian for the holographic
chain Hhol. There is no unique way to disentangle a fictitious
temperature βeff from Hhol. Assuming that Hhol is gapless and
its low-energy dispersion is given by vk, we can estimate βeffv
from the slope of the modes at k = 0 in the left panel of
Fig. 3 (see Table II). The obtained slope shows saturation at
about Lx = 4,5, which suggests that the fictitious temperature
is presumably nonzero (βeff < ∞) in the infinite 2D system.
As we will see, however, the NEE provides a more clear-cut
approach to investigate the critical behavior of Hhol without
any assumption.

Let us now give a precise definition of the NEE. Based
on the ground state of the entanglement Hamiltonian HE, we
construct the nested RDM for the subchain of length $ in the
holographic spin chain as

ρ($) = Tr$+1,...,Ly
[|ψ0〉〈ψ0|], (12)

where |ψ0〉 denotes the normalized ground state of HE and the
trace is taken over the remaining sites excluding the subchain.
The NEE is then obtained from the nested RDM as

S($,Ly) = −Tr1,...,$[ρ($) ln ρ($)], (13)

where the trace is over the sites on the subchain. Since the
low-energy physics of the AFM Heisenberg chain is described
by c = 1 CFT, the NEE is expected to behave as25

SPBC($,Ly) = c

3
ln[f ($)] + s1, (14)

f ($) = Ly

π
sin

(
π$

Ly

)
(15)

for a lattice with PBC, where c is the central charge, and s1 is
a nonuniversal constant. In Fig. 4(a), we show NEE obtained
from the square VBS state with Lx = 5 and Ly = 16. The

TABLE II. Slopes (βeffv) of modes at k = 0 for Ly = 16.

Lx = 1 Lx = 2 Lx = 3 Lx = 4 Lx = 5

1.69000 2.02221 2.13535 2.17006 2.18755

245128-4

�A = e�HE (HE = � ln �A)

des Cloizeaux-
Pearson mode

Spin wave

Hexagonal 
(Lx=5, Ly=32)

Square 
(Lx=5, Ly=16)

Reduced density matrix

Entanglement Hamiltonian

H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504 (2008).

�A =
�

�

e��� |�[A]
� ���[A]

� |

1D antiferro 
Heisenberg

1D ferro
Heisenberg

cf. J. I. Cirac, D. Poilbranc, N. Schuch, and F. Verstraete, Phys. Rev. B 83, 245134 (2011).



Nested entanglement entropy
“Entanglement” ground state := g.s. of        :HE |�0�

HE|�0� = Egs|�0� �A|�0� = �0|�0�
Maximum eigenvalue

Nested reduced density matrix
�(�) := Tr�+1,··· ,L [|�0���0|]

Nested entanglement entropy

HE = � ln �A

S(�, L) = �Tr1,··· ,� [�(�) ln �(�)]

1D quantum critical system (periodic boundary condition)

P. Calabrese and J. Cardy, J. Stat. Mech. (2004) P06002.

BA�



Nested entanglement entropyENTANGLEMENT SPECTRA OF THE TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 84, 245128 (2011)
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FIG. 4. (Color online) Nested entanglement entropy S(!,Ly)
as a function of the subchain length ! for Lx = 5 and Ly = 16.
(a) and (b) show results obtained for square VBS states with PBC and
OBC, respectively. Fits to the CFT predictions, Eqs. (14) and (16),
are indicated by open circles. The lines are guides to the eye.

CFT prediction, Eq. (14), well explains the spatial profile of
the NEE. The fit yields c = 1.01(7), which is reasonably close
to c = 1.

The NEE for ! = Ly/2 (half-NEE) is simplified to be
SPBC(Ly/2,Ly) = (c/3) ln(Ly) + const. From the data with
the finite-size scaling form of the NEE, we can also extract
the central charge c as summarized in Table III. For the case
Lx = 1, c is remarkably close to unity. This further supports
our conjecture: a correspondence between the entanglement
Hamiltonian of the 2D AKLT model and the physical Hamil-
tonian of the 1D Heisenberg chain. A slight modification of c
is observed as the bulk width increases from Lx = 1 to 5.

In the case of the rectangular geometry (OBC), a staggered
pattern of NEE is expected from studies of the standard EE in
open spin chains:26,27

SOBC(!,Ly) = c

6
ln[g(2! + 1)] + a − πc1

2v

(−1)!

g(2! + 1)1/2K
,

(16)

g(!) = 2(Ly + 1)
π

sin
(

π!

2(Ly + 1)

)
.

In Fig. 4(b), we show the NEE for the square VBS state on
the rectangle with Lx = 5 and Ly = 16. We take the central
charge to be c = 1 and the Tomonaga-Luttinger parameter
K = 1, and tune a and c1/v as fitting parameters. The fit
is reasonably good except for the boundaries. This deviation
might be due to logarithmic corrections, which appear in the
SU(2) symmetric AFM spin chains26 but are not taken into
account in Eq. (16).

To provide further evidence for the holographic spin chain,
we now consider the hybrid system comprised of squares
and hexagons, shown in Fig. 5(a). It is expected that the
entanglement Hamiltonian is described by the FM-AFM
alternating Heisenberg model. Figure 5(b) shows the ES for
this system. It is clearly seen that there is a gap between the

TABLE III. The obtained central charge from half-NEE.

Lx = 1 Lx = 2 Lx = 3 Lx = 4 Lx = 5

1.007(4) 1.042(4) 1.055(4) 1.056(2) 1.059(2)

-1 1

triplet excitation

x

y

2ln2

ln2

(a) (b)

(c)

 0.6
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 0  2  4  6  8  10  12  14  16

S(
l,1

6)

l

FIG. 5. (Color online) (a) (Left) VBS state on a hybrid lattice. The
red (dotted) line indicates the reflection axis. (Right) Corresponding
holographic chain. The thick and dashed lines indicate AFM and FM
bonds, respectively. (b) Entanglement spectrum of the VBS state in
(a) with Ly = 16. The ground state energy is denoted by λ0. The
dashed curve indicates the spectrum of triplet-pair bound states.
(c) Nested entanglement entropy S(!,Ly) as a function of ! for
Ly = 16.

ground state and the continuum. The gap rapidly saturates with
increasing Ly . The behavior of the ES is totally consistent with
the energy spectrum of the alternating Heisenberg chain, the
interactions of which are denoted J and J ′.28 By comparing the
bound-state spectrum in Fig. 5(b) with that of the triplet-pair
excitation in the alternating Heisenberg chain,28 we estimate
the ratio of the FM exchange divided by the AFM one as
J ′/J ∼ 0.5. Note that one can further manipulate J ′/J of the
holographic spin chain by tuning the lattice structure and the
number of valence bonds on each edge the lattice. The NEE
associated with the ground state of HE is shown in Fig. 5(c).
The NEE is 2 log 2 when two AFM bonds are cut, whereas it
becomes about log 2 when both FM and AFM bonds are cut.
The obtained result is in good agreement with the standard EE
in the alternating Heisenberg chain studied in Ref. 29.

IV. CONCLUSION

We have studied both the entanglement entropy and
spectrum associated with the VBS ground state of the AKLT
model on various 2D lattices. It was shown that the reduced
density matrix of a subsystem can be interpreted as a thermal
density matrix of the holographic spin chain, the spectrum
of which resembles that of the spin-1/2 Heisenberg chain.
To elucidate this relationship, we have introduced the concept
nested entanglement entropy (NEE), which allows us to clarify
this correspondence in a quantitative way without information
on the fictitious temperatures. The finite-size scaling analysis
of the NEE revealed that the low-energy physics of the
holographic chain associated with the square lattice VBS is
well described by c = 1 conformal field theory. The NEE
was also applied to the hybrid VBS state, the entanglement

245128-5

Square lattice 
(PBC)

Square ladder 
(OBC)

c = 1Central charge: 1D antiferromagnetic Heisenberg

VBS/CFT correspondence
des Cloizeaux-Pearson mode in ES supports this result. 

S(�, L) = �Tr1,··· ,�[�(�) ln �(�)]

BA�
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Entanglement entropy
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FIG. 3: Two-row transfer matrix for the square ladder (a),
and that for the triangular ladder (b).

square and triangular ladders with periodic boundary
conditions (see Fig. 1). In order to avoid boundary con-
ditions incompatible with the modulation of the dens-
est packings, we assume that L = 2m and L = 3m
(m ∈ N) for the square and triangular ladders, respec-
tively. The dependence of EE on the activity z for
both models is shown in Figs. 4 (a) and 4 (b). In
the limit z → ∞, the EEs for square and triangular
ladders become ln 2 and ln 3, respectively, irrespective
of the system size L. This can be understood as fol-
lows: for large z, the ground state is approximately given
by a superposition of the ordered states with the max-
imum density of particles. These ordered states are re-
lated to each other by translations. Therefore, we have
ρA ∼ 1√

2
(|0101...〉〈0101...| + |1010...〉〈1010...|) for the

square ladder and a similar one with period 3 for the
triangular ladder. As a result, we obtain the observed
saturation values of EE. In the opposite limit z → 0, the
EEs become zero since the ground state is the vacuum
state (see Eq. (6)). In the intermediate region between
these two limits, the EE shows a non-monotonic depen-
dence on z and has a peak in both square and triangular
ladders as shown in Figs. 4 (a) and 4 (b). In both cases,
the peak position is at about z = zc, i.e., the critical ac-
tivity in the corresponding classical model, and remains
almost unchanged with increasing L.

Let us focus on the entanglement properties of the
model at z = zc. Figures 4 (c) and 4 (d) show the scaling
of the EE S(L) for both the square and triangular lad-
ders. From these plots, it is clear that the EEs at z = zc

scale linearly with the system size L (corresponding to
the length of the boundary between A and B) and thus
obey the area law:

S(L) = αL + S0, (17)

where α and S0 are the fitting parameters inde-
pendent of L. For square and triangular lad-
ders, (α, S0) = (0.2272(3),−0.036(6)) and (α, S0) =
(0.4001(3), 0.020(5)), respectively. In both cases, S0 is
nearly zero, suggesting that the topological EE intro-
duced in Refs. [48, 49] is zero in our system. This is
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FIG. 4: (color online) (a) EE (S) of the state Eq. (8) on the
square ladder as a function of activity z and (b) the same for
the triangular ladder. As indicated by the arrows, S increases
linearly with increasing system size L in both cases. The dot-
ted horizontal lines indicate, respectively, ln 2 and ln 3 which
are the EEs at z = ∞. (c) Size-dependence of S at the crit-
ical activity z = zc for the square ladder with different sizes
L = 4 − 22 and (d) the same for the triangular ladder with
L = 3 − 21. The dotted lines are least squares fits to the last
four data points using Eq. (17). The fitting parameters are
shown in the figures. Correlation length divided by system
size ξ(z)/L versus z for the square ladder and (f) that for the
triangular ladder.

consistent with the fact that CFTs describing the entan-
glement Hamiltonians of our system are non-chiral as we
will see later.

As discussed in the previous subsection, the Gram ma-
trix M can be interpreted as a transfer matrix in the cor-
responding 2D classical model. Therefore, we expect that
the anomalous behavior of EE at z = zc is attributed to
the phase transition in the classical model. To study the
nature of the phase transitions in both square and tri-
angular cases, we perform a finite-size scaling analysis of
the correlation length. The correlation length is defined
in terms of the entanglement gap as

ξ(z) :=
1

ln[p(1)(z)/p(2)(z)]
, (18)

where p(1)(z) and p(2)(z) are the largest and the second-
largest eigenvalues of M at z, respectively. Figures 4
(e) and 4 (f) show the correlation length divided by the
system size L as a function of z for both square and
triangular cases. Clearly, the curves for different system
sizes cross at the same point z = zc, which implies that
the dynamical critical exponent is given by 1. Near the

Square ladder Triangle ladder

# of states 
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est packings, we assume that L = 2m and L = 3m
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tively. The dependence of EE on the activity z for
both models is shown in Figs. 4 (a) and 4 (b). In
the limit z → ∞, the EEs for square and triangular
ladders become ln 2 and ln 3, respectively, irrespective
of the system size L. This can be understood as fol-
lows: for large z, the ground state is approximately given
by a superposition of the ordered states with the max-
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the peak position is at about z = zc, i.e., the critical ac-
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ders. From these plots, it is clear that the EEs at z = zc
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the length of the boundary between A and B) and thus
obey the area law:
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ders, (α, S0) = (0.2272(3),−0.036(6)) and (α, S0) =
(0.4001(3), 0.020(5)), respectively. In both cases, S0 is
nearly zero, suggesting that the topological EE intro-
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four data points using Eq. (17). The fitting parameters are
shown in the figures. Correlation length divided by system
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consistent with the fact that CFTs describing the entan-
glement Hamiltonians of our system are non-chiral as we
will see later.

As discussed in the previous subsection, the Gram ma-
trix M can be interpreted as a transfer matrix in the cor-
responding 2D classical model. Therefore, we expect that
the anomalous behavior of EE at z = zc is attributed to
the phase transition in the classical model. To study the
nature of the phase transitions in both square and tri-
angular cases, we perform a finite-size scaling analysis of
the correlation length. The correlation length is defined
in terms of the entanglement gap as

ξ(z) :=
1

ln[p(1)(z)/p(2)(z)]
, (18)

where p(1)(z) and p(2)(z) are the largest and the second-
largest eigenvalues of M at z, respectively. Figures 4
(e) and 4 (f) show the correlation length divided by the
system size L as a function of z for both square and
triangular cases. Clearly, the curves for different system
sizes cross at the same point z = zc, which implies that
the dynamical critical exponent is given by 1. Near the
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6

 0

 0.5

 1

 1.5

 2

 2.5

-10  0  10

ξ(
z)

/L

(z-zc)L
1/ν

(a)

L= 6
L= 8
L=10
L=12
L=14
L=16
L=18
L=20
L=22

 0

 0.5

 1

 1.5

 2

-50  0  50

ξ(
z)

/L

(z-zc)L
1/ν

(b)

L= 6
L= 9
L=12
L=15
L=18
L=21

FIG. 5: (color online) Finite-size scaling plot of ξ(z)/L for
the square ladder (a) and that for the triangular ladder (b).
The correlation length exponents of the square and triangular
ladders are ν = 1 and ν = 5/6, respectively.

critical point, we expect that ξ(z)/L obeys the scaling
relation

ξ(z)/L = f((z − zc)L1/ν), (19)

where ν is the correlation length exponent and f(·) is a
scaling function. Figures 5 (a) and 5 (b) show plots of
ξ(z)/L versus the scaling variable (z − zc)L1/ν . For the
square ladder, we find a good data collapse with ν = 1,
which agrees with the correlation length exponent of the
2D Ising model (see Fig. 5 (a)). On the other hand, for
the triangular ladder, the exact value ν = 5/6 can be ob-
tained by noting that the two-row transfer matrix shown
in Fig. 3 (b) is exactly equivalent to that of the hard-
hexagon model [50]. We obtain an excellent data collapse
as shown in Fig. 5 (b). Note that the exponent ν = 5/6
coincides with that of the three-state Potts model [51].

C. Entanglement spectrum (ES)

The anomalous behavior of the correlation length at
z = zc suggests that the entanglement gap at this point
vanishes linearly with 1/L. To further elucidate the
gapless nature of the entanglement Hamiltonian HE :=
− lnM , we calculate the excitation spectrum of HE at
the critical point. The ES {λα}α=1,...,NL can be obtained
from the relation λα = − ln pα. Each eigenstate is la-
beled by the total momentum k due to the translational
symmetry in the leg direction. Fig. 6 shows the ES of
both square and triangular ladders at z = zc. In both
cases, there is the minimum eigenvalue λ0(:= minα λα)
at k = 0, and the ES is symmetric about k = 0 and k = π
(mod 2π). For the square ladder, the gapless modes at
momenta k = 0 and k = π are clearly visible. On the
other hand, for the triangular ladder, they are at k = 0,
2π/3, and 4π/3.

These towers of energy levels can be identified as those
of CFTs describing the low-energy spectra of HE. As op-
posed to topologically ordered systems such as fractional

quantum Hall states, the underlying CFTs are non-chiral
in our case, i.e., there are both left- and right-moving
modes. In general, the excitation energies from which
towers are generated have the form

λα − λ0 =
2πv

L
(hL,α + hR,α), (20)

where v is the velocity, and hL,α and hR,α are (holomor-
phic and anti-holomorphic) conformal weights. The sum
hL,α + hR,α is called scaling dimension. hL,α − hR,α is
related to the total momentum k. Comparing the en-
ergy spectrum obtained numerically with the above re-
lation, we can identify conformal weights of low-lying
states. Scaling dimensions of several low-lying states are
indicated in Fig. 6. From the obtained scaling dimen-
sions, we conclude that low-energy spectrum of HE for
the square ladder model at z = zc is described by the
CFT with central charge c = 1/2 [52], whereas that for
the triangular ladder model is described by the c = 4/5
CFT. The former CFT is identical to that of the 2D crit-
ical Ising model, while the latter describes the universal-
ity class of the critical three-state Potts model. These
are all consistent with the analysis of correlation length
exponent in the previous subsection.

We note that the exact scaling dimensions for the tri-
angular ladder model at the critical point can be ob-
tained analytically by exploiting the integrability of the
hard-hexagon model [53]. Here integrability means the
existence of a family of commuting transfer matrices. In
fact, for the model on the triangular ladder, we can show
that there is a one-parameter family of commuting ma-
trices including the Gram matrix M in Eq. (15) as a
special case (see Appendix B for the proof). This prop-
erty holds even away from the critical point. Therefore,
the entanglement Hamiltonian of this system at arbitrary
z is integrable in the same sense as in the original hard-
hexagon model.

D. Nested entanglement entropy (NEE)

To provide further evidence that the entanglement
Hamiltonians at z = zc are described by minimal CFTs
with central charge c < 1, we next consider NEE which
was first introduced in Ref. [22]. As demonstrated in the
previous work, one can obtain the central charge directly
from the scaling properties of the NEE without evaluat-
ing the velocity v in Eq. (20). Let us first define the NEE
from the ground state of HE. We divide the system on
which the holographic model lives into two subsystems:
a block of % consecutive sites and the rest of the chain.
The nested reduced density matrix is then defined as

ρ(%) := Tr#+1,··· ,L[|ψ0〉〈ψ0|], (21)

where |ψ0〉 denotes the normalized ground state of HE

and the trace is taken over the degrees of freedom outside
the block. Using ρ(%), the NEE is expressed as

s(%, L) := −Tr1,··· ,#[ρ(%) ln ρ(%)], (22)

Finite-size scaling relation:

2D Ising
� = 1 � = 5/6

Square ladder Triangle ladder

2D 3-state Potts
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FIG. 6: (color online) Low-energy spectra of the entangle-
ment Hamiltonian HE at z = zc for the square ladder (top
panel) and for the triangular ladder (bottom panel). In both
cases, the system size is L = 18. The ground state energy
of HE is denoted by λ0. The red open circles indicate posi-
tions of the primary fields of the corresponding CFTs, while
the green open squares imply the positions of the descendant
fields. Discrepancies between the numerical results and the
CFT predictions are due to finite-size effects.

where the trace is taken over the states in the block.
Let us now analyze the NEE obtained numerically in

detail. Since the low-energy spectra of HE at z = zc show
good agreement with those of CFT predictions, the NEE
is expected to behave as

s(!, L) =
c

3
ln[g(!)] + s1, (23)

g(!) =
L

π
sin

(
π!

L

)
, (24)

where s1 is a non-universal constant [54]. Figure 7 shows
the NEE for both square and triangular ladders as a func-
tion of ln[g(!)]. The data for L = 24 are obtained by the
power method. The slopes of the dotted lines in Fig. 7 are
c/3, where c = 1/2 for the square ladder and c = 4/5 for
the triangular ladder. Clearly, the results are in excellent
agreement with the formula Eq. (23) and provide further
evidence for the holographic minimal models, i.e., the en-
tanglement Hamiltonians associated with the square and
triangular ladders at z = zc are described by unitary
minimal CFTs with c < 1.

IV. CONCLUSION

We have presented a detailed analysis of the entan-
glement entropy and entanglement spectrum (ES) in the
ground state of the quantum lattice-gas model on two-
leg ladders. The exact ground state of the model can be
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FIG. 7: (color online) NEE for the square ladder (a) and that
for the triangular ladder (b). Dotted lines are a guide to the
eye and indicate the slope of c/3, where c = 1/2 and c = 4/5
are used for the square and triangular ladders, respectively.
The solid circle indicates NEE for L = 24. The other symbols
are the same as in Fig. 5.

obtained as a superposition of states, each of which is
labeled by a classical configuration with nearest neigh-
bor exclusion. We have shown that the reduced density
matrix of one of the legs can be written in terms of the
transfer matrix in the classical lattice-gas model in two
dimensions. We then numerically studied the entangle-
ment properties of the models on both square and tri-
angular ladders. Both models exhibit critical ES when
the parameter (activity) z is chosen so that the corre-
sponding classical model is critical. From the finite-size
scaling analysis, we found that the critical theory describ-
ing the gapless ES of the square ladder is the CFT with
c = 1/2, while that of the triangular ladder is the CFT
with c = 4/5. This was further confirmed by the analysis
of the nested entanglement entropy. We also showed that
the model on the triangular ladder is integrable at arbi-
trary z in the sense that there is a one-parameter family
of matrices commuting with the reduced density matrix.

It would be interesting to calculate other quantities
by exploiting the close connection between the entan-
glement Hamiltonian and the two-dimensional classical
model. It is likely that the virtual-space transfer matrix
method [55] can be applied to the calculation of Rényi
entropies. Finally, it would also be interesting to ex-
tend our analysis to the case of truly two-dimensional
lattices. We note, however, that the model on N -leg lad-
ders (N > 2) cannot be treated on the same footing since
the Gram matrix cannot be written by the transfer ma-
trix alone. Thus new methods need to be developed to
analyze two-dimensional systems.
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obtained as a superposition of states, each of which is
labeled by a classical configuration with nearest neigh-
bor exclusion. We have shown that the reduced density
matrix of one of the legs can be written in terms of the
transfer matrix in the classical lattice-gas model in two
dimensions. We then numerically studied the entangle-
ment properties of the models on both square and tri-
angular ladders. Both models exhibit critical ES when
the parameter (activity) z is chosen so that the corre-
sponding classical model is critical. From the finite-size
scaling analysis, we found that the critical theory describ-
ing the gapless ES of the square ladder is the CFT with
c = 1/2, while that of the triangular ladder is the CFT
with c = 4/5. This was further confirmed by the analysis
of the nested entanglement entropy. We also showed that
the model on the triangular ladder is integrable at arbi-
trary z in the sense that there is a one-parameter family
of matrices commuting with the reduced density matrix.

It would be interesting to calculate other quantities
by exploiting the close connection between the entan-
glement Hamiltonian and the two-dimensional classical
model. It is likely that the virtual-space transfer matrix
method [55] can be applied to the calculation of Rényi
entropies. Finally, it would also be interesting to ex-
tend our analysis to the case of truly two-dimensional
lattices. We note, however, that the model on N -leg lad-
ders (N > 2) cannot be treated on the same footing since
the Gram matrix cannot be written by the transfer ma-
trix alone. Thus new methods need to be developed to
analyze two-dimensional systems.
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where the trace is taken over the states in the block.
Let us now analyze the NEE obtained numerically in

detail. Since the low-energy spectra of HE at z = zc show
good agreement with those of CFT predictions, the NEE
is expected to behave as

s(!, L) =
c

3
ln[g(!)] + s1, (23)

g(!) =
L

π
sin

(
π!

L

)
, (24)

where s1 is a non-universal constant [54]. Figure 7 shows
the NEE for both square and triangular ladders as a func-
tion of ln[g(!)]. The data for L = 24 are obtained by the
power method. The slopes of the dotted lines in Fig. 7 are
c/3, where c = 1/2 for the square ladder and c = 4/5 for
the triangular ladder. Clearly, the results are in excellent
agreement with the formula Eq. (23) and provide further
evidence for the holographic minimal models, i.e., the en-
tanglement Hamiltonians associated with the square and
triangular ladders at z = zc are described by unitary
minimal CFTs with c < 1.

IV. CONCLUSION

We have presented a detailed analysis of the entan-
glement entropy and entanglement spectrum (ES) in the
ground state of the quantum lattice-gas model on two-
leg ladders. The exact ground state of the model can be
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obtained as a superposition of states, each of which is
labeled by a classical configuration with nearest neigh-
bor exclusion. We have shown that the reduced density
matrix of one of the legs can be written in terms of the
transfer matrix in the classical lattice-gas model in two
dimensions. We then numerically studied the entangle-
ment properties of the models on both square and tri-
angular ladders. Both models exhibit critical ES when
the parameter (activity) z is chosen so that the corre-
sponding classical model is critical. From the finite-size
scaling analysis, we found that the critical theory describ-
ing the gapless ES of the square ladder is the CFT with
c = 1/2, while that of the triangular ladder is the CFT
with c = 4/5. This was further confirmed by the analysis
of the nested entanglement entropy. We also showed that
the model on the triangular ladder is integrable at arbi-
trary z in the sense that there is a one-parameter family
of matrices commuting with the reduced density matrix.

It would be interesting to calculate other quantities
by exploiting the close connection between the entan-
glement Hamiltonian and the two-dimensional classical
model. It is likely that the virtual-space transfer matrix
method [55] can be applied to the calculation of Rényi
entropies. Finally, it would also be interesting to ex-
tend our analysis to the case of truly two-dimensional
lattices. We note, however, that the model on N -leg lad-
ders (N > 2) cannot be treated on the same footing since
the Gram matrix cannot be written by the transfer ma-
trix alone. Thus new methods need to be developed to
analyze two-dimensional systems.
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