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main messages

Unitary time evolution in an isolated 
quantum system can describe the 
approach to equilibrium

message 2

A single quantum mechanical pure 
state can fully represent equilibrium 
state in a macroscopic system
(and such pure states are TYPICAL)

message 1



a pure state which represents equilibrium
— an instructive example 

Choose momenta p1,p2, . . . ,pN randomly according to
the Maxwell-Boltzmann distribution at temperature T, 
and fix them
Then, define a pure state by

ϕex(r1, . . . , rN ) =
N�

�=1

exp
�
i
p� · r�

�

�

Can you distinguish           from           
the equilibrium state of a dilute gas?

|ϕex�

|ϕex��ϕex|
You CAN, IF you know and can 
measure the operator

Usually, you CAN’T

The state            represents equilibrium!|ϕex�



General and 
heuristic pictures 
about equilibrium
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Macroscopic view
Any macroscopic system settles to an equilibrium state 
after a sufficiently long time 

Equilibrium state
No macroscopic changes, no macroscopic flows
Uniquely determined by specifying only few macroscopic 
variables (i.e., the total energy U)
(V and N are fixed)

a system consisting of a single substance



All the micro-states with energy U

Microscopic view
Microscopically there are A LOT OF states with energy U

(r1, r2, . . . , rN , p1, . . . , pN )

The microcanonical distribution  (in which all the micro-
states with U appear with the equal probabilities) 
describes equilibrium

Standard procedure of statistical mechanics
(principle of equal weights)

Why does this work??

the positions and 
momenta of all the 
molecules



Ergodicity argument
As time evolves, the 
state of the system 
visits most part of the 
phase space

It takes too long
The idea becomes harder to realize in systems 

with higher degrees of freedom (but, stat mech is for 
systems with huge degrees of freedom!)

Very interesting idea that led to rich mathematical 
development; BUT misses the point as a physical 
mechanism of the approach to equilibrium

All the micro-states with energy U

time average leads to the 
microcanonical distribution



Typicality argument

A single micro-state may represent equilibrium!

In a macroscopic system, a great majority of micro-
states with energy U look identical (from macro point of view)

All the micro-states with energy U

thus the microcanonical ensemble works

“Equilibrium” = the common properties shared by 
these almost identical micro-states



Approach to equilibrium

Equilibrium states:
typical states

Non-equilibrium states:
minor atypical states

All the micro-states with energy U

relaxation

the approach to equilibrium is quite a robust phenomenon

Humpty Dumpty sat on a wall,
Humpty Dumpty had a great fall.
All the king's horses and all the king's men
Couldn't put Humpty together again



Isolated 
macroscopic 

quantum systems
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Basic setting
Standard (and realistic) treatment

Our (obviously unrealistic) treatment

quantum system
 of interest

quantum system
 of interest

surrounding environment (bigger system)

perfectly isolated from the outside world



Why isolated systems?
Standard (fashionable) answer

We can realize isolated quantum 
systems in ultra cold atoms

My (old-fashioned) answer
This is still a very fundamental study, very very far 
from practical applications
We wish to learn what isolated systems can do
(e.g., whether they exhibit the approach to equilibrium)
After that, we may study the effect played by the 
environment

clean system of 10   atoms at 10    K7 –7



Settings and 
assumptions
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✦ Particle system with constant 

Macroscopic system

Hilbert space

Quantum system in a large volume V

✦ Quantum spin system

Hamiltonian
Energy eigenstate Ĥ|ψj� = Ej |ψj�

�ψj |ψj� = 1

Htot

Ĥ

σ(�)
β(u) = σ�(u)

ρ = N/V

Ej ≤ Uj(the number of    such that              )ΩV (U) =
∼ exp

�
V σ(U/V )

�
The number of states

entropy density
inverse temperature



u−∆u, u

Energy shell

microcanonical average of an observable

�Ô�mc :=
1
D

D�

j=1

�ψj |Ô|ψj�

Ô

Hmicrocanonical energy shell
|ψj� j = 1, . . . , Dwith the space spanned by

H

Fix arbitrary    and small       , and consider the range of 
energy j = 1, . . . , Dwith 

u ∆u
u−∆u ≤ Ej/V ≤ u

we have 
relabeled j

D ∼ eσ(u) V



Pure state which represents equilibrium
Suppose that we are interested only in a SINGLE 
extensive physical quantity     ̂A = O(V )

Â/Vprecision for measuringδ > 0

projection

DEFINITION:  A normalized pure state                 
represents equilibrium if there is a constant             , andα > 0

|ϕ� ∈ H

�ϕ| P̂
�

|Â− �Â�mc|/V ≥ δ
�

|ϕ� ≤ e−α V

|Ameasured − �Â�mc|/V ≤ δ

with probability ≥ 1− e−αV

if we measure      in      , then|ϕ�Â

one almost surely gets the equilibrium value! 17



Basic assumption

simply says large fluctuation is exponentially rare 
(a weak version of large deviation property)

THERMODYNAMIC BOUND (TDB):
There is a constant            , and one has�

P̂
�

|Â− �Â�mc| ≥ V δ
��

mc
≤ e−γ V

for any V

γ > 0

expected to be valid for ANY (pure) equilibrium state, but 
has been proved (very recently) only in limited situations
a general proof seems to be extremely hard

Extensive physical quantity of interestÂ = O(V )
Â/Vprecision for measuringδ > 0

statement in statistical mechanics



Thermodynamic bound
THEOREM: Take a quantum system on a lattice with short-
ranged Hamiltonian, and let                        , where      acts 
only on site    .  Then for any      there is       and we have�

P̂
�

|Â− �Â�mc| ≥ V δ
��

mc
≤ e−γ V

Â =
�

x âx âx
x

provided that           is sufficiently small β(u)

β(u) < βcl
c

�
P̂

�
|Ŝtot

z | ≥ V δ
��

mc
≤ exp

�
− δ2

4χcl(β(u))
V

�

δ γ

THEOREM: For the Ising model under magnetic field in the 
x-direction, we have for any      that

provided that 

δ

works for any     in the one-dimensional modelu



Typicality of pure 
states which represent 

equilibrium
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Average over     
a stateH � |ϕ� =

�D
j=1 αj |ψj�

H

can be regarded as a point on the unit sphere of

α∗
jαk =

1
D

δj,k

dα := d(Reα) d(Imα)

(· · · ) :=

�
dα1 · · · dαD δ

�
1−

�D
j=1 |αj |2

�
(· · · )

�
dα1 · · · dαD δ

�
1−

�D
j=1 |αj |2

�

From the symmetry

with �ϕ|ϕ� = 1
CD

a natural (basis independent) measure on       is the 
uniform measure on the unit sphere 

H

corresponding average



Average over    and mc-average
operator
quantum mechanical expectation value

Another way of looking at the microcanonical average

�ϕ|Ô|ϕ� =
�

j,k

α∗
jαk �ψj |Ô|ψk�

=
1
D

D�

j=1

�ψj |Ô|ψj� = �Ô�mc

�ϕ|Ô|ϕ� =
D�

j,k=1

α
∗
jαk �ψj |Ô|ψk�

Ô |ϕ� =
�D

j=1 αj |ψj�normalized state

average over

H

H

average over D energy eigenstatesaverage over 
infinitely many 

states in the shell



Typicality of equilibrium
Assume Thermodynamic bound (TDB)

THEOREM: Choose a normalized                 randomly.  
Then with probability

|ϕ� ∈ H

Almost all pure state       represents equilibrium!!|ϕ�

≥ 1− e−(γ−α)V

�ϕ| P̂
�

|Â− �Â�mc|/V ≥ δ
�

|ϕ� ≤ e−α V

�
P̂

�
|Â− �Â�mc|/V ≥ δ

��

mc
≤ e−γ V

PROOF (easy) write P̂≥ = P̂
�

|Â− �Â�mc|/V ≥ δ
�

e−αV Prob
�
�ϕ|P̂≥|ϕ� ≥ e−αV ] ≤ �ϕ|P̂≥|ϕ� = �P̂≥�mc ≤ e−γV

one can prove stronger estimate (use Sugita’s result)message 1

provable for 
some models

Prob
�
�ϕ|P̂≥|ϕ� ≥ e−αV ] ≤ e−(γ−α)V



The approach to 
equilibrium
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|ϕ(0)� ∈ Hinitial state
under suitable conditions we shall prove that 

Next question
|ϕ(t)� = e−iĤt|ϕ(0)�

there exist a (large) constant     and a subset

t

0

B

τ

such that for any
B ⊂ [0, τ ]τ

with |B|/τ ≤ e−αV t ∈ [0, τ ]\B
�ϕ(t)| P̂

�
|Â− �Â�mc|/V ≥ δ

�
|ϕ(t)� ≤ e−α V

|ϕ(t)� represents equilibrium for most    in the long runt

the approach to equilibrium!



Tasaki 1998, Reimann 2008 
Linden, Popescu, Short, Winter 2009 
and many others

Two strategies
STRATEGY 1:  based on an assumption on the initial state

STRATEGY 2:  based on “eigenstate thermalization”

http://arxiv.org/abs/1003.2133
http://arxiv.org/abs/1003.2133
http://arxiv.org/abs/1003.2133
http://arxiv.org/abs/1003.2133
http://arxiv.org/abs/1003.2133
http://arxiv.org/abs/1003.2133


j �= j� ⇒ Ej �= Ej�

First strategy
Expand the initial state as |ϕ(0)� =

�D
j=1 cj |ψj�

coefficients are not too sharply concentrated
|cj |2 ≤ eκV /D

thermodynamic bound (TDB)

no degeneracy

ASSUMPTIONS:

|ϕ(t)� represents equilibrium for most    in the long runt

THEOREM: For any                       satisfying the above, |ϕ(0)� ∈ H

�D
j=1 |cj |2 = 1

0 < κ < γ − 2α

provable 
for some 
models



First strategy
Expand the initial state as |ϕ(0)� =

�D
j=1 cj |ψj�

coefficients are not too sharply concentrated
|cj |2 ≤ eκV /D

YES, if an experimentalist innocently prepares an 
initial state, it is very very likely that this is satisfied

WHO KNOWS?  we don’t know almost anything 
about state preparation in macroscopic systems

most works on equilibration and thermalization in 
isolated quantum systems are based on similar 
assumption about the “lack of sharp concentration”

is this reasonable?



proof 1/2
initial state

time-evolution

oscillates

|ϕ(0)� =
�D

j=1 cj |ψj�

|ϕ(t)� =
�D

j=1 cj e−iEjt |ψj�

�ϕ(t)|P̂≥|ϕ(t)� =
�

j,k

c∗jck ei(Ej−Ek)t�ψj |P̂≥|ψk�

lim
τ↑∞

1
τ

� τ

0
dt�ϕ(t)|P̂≥|ϕ(t)� =

�

j

|cj |2�ψj |P̂≥|ψj�

≤ eκV

D

D�

j=1

�ψj |P̂≥|ψj� = eκV �P̂≥�mc

≤ e−(γ−κ)V ≤ e−2αV /2

long-time average



proof 2/2

define the “bad” set as

then obviously

lim
τ↑∞

1
τ

� τ

0
dt�ϕ(t)|P̂≥|ϕ(t)� ≤ e−2αV /2

1
τ

� τ

0
dt�ϕ(t)|P̂≥|ϕ(t)� ≤ e−2αV

τ

1
τ

� τ

0
dt�ϕ(t)|P̂≥|ϕ(t)� ≥ |B|

τ
e−αV

for sufficiently large

B =
�
t ∈ [0, τ ]

�� �ϕ(t)|P̂≥|ϕ(t)� ≥ e−αV
�

|B|/τ ≤ e−αVwe thus find

for long-time average
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Tasaki 1998, Reimann 2008 
Linden, Popescu, Short, Winter 2009 
and many others

arXiv:1003.2133 (Submitted on 10 Mar 2010 (v1), last revised 2 Sep 2010 (this version, v2))

Proof of the Ergodic Theorem and the H-Theorem in 
Quantum Mechanics

John von Neumann
Zeitschrift fuer Physik 57: 30-70 (1929)

Goldstein, Lebowitz, Mastrodonato, Tumulka, Zanghi  2010 

Two strategies
STRATEGY 1:  based on an assumption on the initial state

STRATEGY 2:  based on “eigenstate thermalization”
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|ϕ(t)� represents equilibrium for most    in the long run
THEOREM: For ANY                      , |ϕ(0)� ∈ H

second strategy
j �= j� ⇒ Ej �= Ej�no degeneracy

t

“energy eigenstate thermalization”
|ψj�Each         represents equilibrium

 
j = 1, . . . , D γ > 2αfor each

�ψj | P̂
�

|Â− �Â�mc|/V ≥ δ
�

|ψj� ≤ e−γ V

suggested (but not guaranteed) by the 
typicality of equilibrium

ASSUMPTIONS:



proof
initial state

time-evolution

|ϕ(0)� =
�D

j=1 cj |ψj�

|ϕ(t)� =
�D

j=1 cj e−iEjt |ψj�

�ϕ(t)|P̂≥|ϕ(t)� =
�

j,k

c∗jck ei(Ej−Ek)t�ψj |P̂≥|ψk�

lim
τ↑∞

1
τ

� τ

0
dt�ϕ(t)|P̂≥|ϕ(t)� =

�

j

|cj |2�ψj |P̂≥|ψj�

≤ e−γV
�

j

|cj |2 = e−γV ≤ e−2αV /2

the rest is exactly the same

long-time average



Comparison of the two theorems
about thermalization

|ϕ(t)� represents equilibrium for most    in the long runt

FIRST THEOREM:
requires the assumption about the “lack of sharp 
concentration” in the initial state
the other conditions (TDB and non-degeneracy) are 
verified in concrete models

SECOND THEOREM:
works for an ARBITRARY initial state
the “energy eigenstate thermalization” is not yet 
proved in any nontrivial concrete systems

message 2

|ϕ(0)� ∈ Hinitial state |ϕ(t)� = e−iĤt|ϕ(0)�

the approach to equilibrium!



Results for typical 
projections
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Motivation

philosophy of random matrix for nuclear physics

j = 1, . . . , D

P̂≥ = P̂
�

|Â− �Â�mc|/V ≥ δ
�It is extremely difficult to solve these issues for a concrete

�ψj |P̂≥|ψj� � 1

Study the projection        onto a random    dimensional 
subspace of the energy shell 

P̂≥ d
H d� D

we might understand certain “generic” features

Is the energy eigenstate thermalization true?

τWhat is the time-scale    necessary for thermalization?

REMAINING ESSENTIAL ISSUES



Energy eigenstate thermalization

energy eigenstate thermalization is 
typically valid

von Neumann (1929)

d� D

�ψj |P̂≥|ψj� � 1

THEOREM: Let        be the projection operator onto a 
random    dimensional subspace of      , where               . 
Then with probability close to 1, we have      

P̂≥
d H

j = 1, . . . , Duniformly in

this does not prove “energy eigenstate 
thermalization” for a given concrete 
system, but suggests that it is likely 

Goldstein, Lebowitz, Mastrodonato, Tumulka, Zanghi (2010)

http://arxiv.org/abs/1003.2133
http://arxiv.org/abs/1003.2133
http://arxiv.org/abs/1003.2133
http://arxiv.org/abs/1003.2133


Time scale for thermalization

Goldstein, Hara, Tasaki (2014)
kBT = 1/σ�(u)

any initial state thermalizes in the time-scale τ � τB

τ

where                                is the Boltzmann time

For ANY initial state                      , and any    , we have
1
τ

� τ

0
dt�ϕ(t)|P̂≥|ϕ(t)� � τB

τ

|ϕ(0)� ∈ H

τB := h/(kBT )

THEOREM: Let        be the projection operator onto a 
random    dimensional subspace of      , where               . 
Then with probability close to 1, the following is true.      

P̂≥
d� Dd H



Extremely quick thermalization

τB ∼ 10−13 sT ∼ 300 K

any initial state thermalizes in the time-scale τ � τB

Goldstein, Hara, Tasaki (2014)

THEOREM: EVERYTHING THERMALIZES WITHIN A 
MICROSECOND!! ?     

one encounters such quick relaxations
 in several physical contexts
but this is certainly
highly unrealistic in general!

THEOREM: If      is local and
there is a local conserved quantity then
the relaxation time can be  ≥ O(L)

Ĥ



The limit of the typicality approach
THE METHOD OF APPEAL TO TYPICALITY

show that
 “property A is true of most B”
this suggests that
 “property A is true of a concrete given B”
(unless there are reasons to expect otherwise) 

we have (unfortunately) shown that “extremely quick 
decay is true of most      ”P̂≥

To develop a satisfactory theory of thermalization 
(including the issue of time-scale) in isolated quantum 
systems , we can no longer rely on typicality argument, 
but should take into account essential features of 
realistic quantum systems



Summary
 In a macroscopic quantum system, a typical state 

(with almost fixed energy) represents equilibrium

 With suitable assumptions, one can show that a 
purely quantum mechanical time-evolution in an 
isolated system brings the system towards 
equilibrium

 To understand the important issue of time-scale, 
we need to go beyond the philosophy of appeal to 
typicality


