## Bell's spin-entangled electron pair generated by local-Fermi-liquid exchange interaction

#### Rui Sakano, ISSP

Collaboration:

Akira Oguri, Yunori Nisikawa (Osaka city university), Eisuke Abe (Keio university), Meydi Ferrier (University of Paris-Sud), Kensuke Kobayashi (Osaka university)

Discussion:

Shiro Kawabata (AIST)

YITP Workshop on Quantum Information Physics, Jan 5th-8th 2016, Yukawa Institute for Theoretical Physics, Kyoto University

## Bell's pair generator by many-body effect

#### **Cooper pair splitter**

Theory: Chtchelkatchev *et al.*, PRB **66**, 161320(R) (2002) Experiment: Hofstetter *et al.*, Nature **461**, 960-963 (2009).



#### New idea! Pair by Local-Fermi-liquid interaction

Bell's pair in current through a double quantum dot



## **Local Fermi-liquid**

Landau's Fermi liquid theory Quantum dot (impurity) systems

### Ground state of "the Kondo effect"



Nozieres, J. Low Temp. Phys. 17, 31 (1974); Wilson, Rev. Mod. Phys. 47, 773 (1975); Yamada, PTP 53, 970 (1975)



#### Introduction

#### **Electric transport and Kondo effect in quantum dot**

#### Charge pair creation mechanism

shot noise measurement for Kondo effect in quantum dot

Theory: Sela *et al.*, PRL (2006), Gogolin and Komnik PRL (2006), RS *et al.*, PRL (2012) Experiment: Ferrier, RS *et al.*, Nat. Phys. (2015)

#### Bell's pair creation in double quantum dot

## Electric transport and Kondo effect in quantum dot

## Quantum dot



## **Transport through quantum dot**



## Kondo effect in quantum dot

#### **Coulomb blockade**



# Detection of pair charge creation in local Fermi-liquid

Shot noise measurement

## **Current generated by rare event (Poissonian process)**

At zero temperature where no thermal noise

Discretized charge state  $\longrightarrow$  Current noise  $S = 2e^* \langle I \rangle$ Average current Current-current correlation (current noise)  $S \coloneqq \int dt \langle \delta I(t) \ \delta I(0) + \delta I(0) \ \delta I(t) \rangle$ 

Current fluctuation:  $\delta I(t) \coloneqq I(t) - \langle I \rangle$ 

The proportional constant *e*\*

**Effective charge of current carrying states** 

## **Effective charges of many-body systems**

#### **Fractional quantum Hall system**

Fractional charges of Laughlin's quasi-particle:  $e^* = e/3$ , etc.

Picciotto, et al., Nature 389, 162 (1997).

Saminadayar, et al., PRL 79, 2526 (1997).



#### Superconductor/normal metal junction

Cooper pair charge:  $e^* = 2e$ 

Lefloch, et al., PRL 90, 067002 (2003).





#### Effective charge of Kondo-correlated quantum dots?

## Our model

#### **Impurity Anderson model**

$$\mathcal{H}_A = \mathcal{H}_0 + \mathcal{H}_I$$

• lead part ( $\alpha = L, R$ ) and quantum do

$$\mathcal{H}_0 = \sum_{k\alpha\sigma} \varepsilon_k c^+_{k\alpha\sigma} c_{k\alpha\sigma} + \sum_\sigma \epsilon_d d^+_\sigma d_\sigma$$

 $\sigma$ : spin

$$+\sum_{k\alpha} \left( \frac{v_{\alpha}}{\sqrt{\mathcal{N}}} d_{\sigma}^{+} c_{k\alpha\sigma} + \text{H.c.} \right)$$

lead electrode L

 $\mu_L = eV/2$ 

eV

quantum dot  $\mu_R = -eV/2$ 

lead eledctrode R

Coulomb interaction

$$\mathcal{H}_{\mathrm{I}} = U d_{\uparrow}^{+} d_{\uparrow} d_{\downarrow}^{+} d_{\downarrow}$$

Dot level linewidth:  $\Gamma = \frac{1}{2}(\Gamma_L + \Gamma_R)$ 

$$\Gamma_{\alpha} \coloneqq 2\pi \rho_c v_{\alpha}^2$$

 $\rho_c$ : Density of state for conduction electrons in lead electrods

## **Reorganized perturbation**

#### **Original model**

Perturbation expansion up to *infinite* order in interaction U



We know how the parameters are renormalized.

#### **Quasiparticle model (local Fermi liquid)**

Perturbation expansion up to 2nd order in Fermi-liquid interaction  $\widetilde{U}$ 

+ counter term to avoid overcounting



Exact transport quantities up to  $V^3$  (Local Fermi liquid)



#### good point

Contribution decomposed to perturbation processes in Fermi-liquid interaction  $\widetilde{U}$ .

Yamada, PTP **53**, 970 (1975); Nozieres, JLTP **17**, 31 (1974); Wilson, RMP **47**, 773 (1975); Hewson, PRL **70**, 4007 (1993) Oguri, PRB **64**, 153305 (2001)

## **Quasiparticle Hamiltonian**



## **Electric current**

Oguri, PRB 64, 153305 (2001)

Low-bias current through spin Kondo dot

$$I = \frac{2e^2}{h} V \left[ 1 - \left[ \frac{1}{12} + \frac{5}{12} \left( \frac{\widetilde{U}}{\pi \widetilde{\Gamma}} \right)^2 \right] \left( \frac{eV}{\widetilde{\Gamma}} \right)^2 \right] + O(V^4)$$
$$=: I_b$$

#### V-linear term:

Free quasiparticle contribution Perfect transmission

### V<sup>3</sup>term:

Fermi-liquid interaction enhances the backscattering current

with small probability "Poissonian process".

Noise-current ratio 
$$\frac{S}{2eI_b}$$
 for the backscattering current



## **Noise-current ratio**

#### Local-Fermi-liquid calculation



Gogolin and Komnik, PRL **97,** 016602 (2006); Sela and Malecki, PRB **80**, 233103 (2009); Fujii, JPSJ **79**, 044714 (2010); RS, Fujii, and Oguri, PRB **83**, 075440 (2011)



#### Analysis of scattering process in quasiparticle picture

#### **Backscattering current**



"Not elemental charge of excited states, but evidence of the charge pair creation by the Fermi-liquid interaction.

## **Experiment in SU(2) Kondo dot**

M. Ferrier, RS et al., Nat. Phys. (2015)



### Direct measurement on "charge pair" creation.

This is not our goal, yet.

## Bell's pair creation by local-Fermi-liquid interaction

## **Double quantum dot device**

#### Motivation

Testing "quantum" correlation of quasiparticle pair



- Coulomb interaction
- Exchange coupling

#### **Correlation between channels**



A. Hübel, et al., PRL 101, 186804 (2008)

## **Bell's correlation in current**

Chtchelkatchev et al., PRB 66, 161320(R) (2002)

#### Experimental observable quantity Electric current

#### **Counting number of electrons**

coming from lead  $\alpha$  =Left,Right to the dot with spin orientating  $\theta$ through channel m = 1,2in time interval  $[t, t + \tau]$ 

$$N_{Rm\theta}(t,t+\tau) = \frac{1}{e} \int_{t}^{t+\tau} dt' I_{Rm\theta}(t')$$



Generated spin per a particle

 $N_{\alpha m\uparrow_{\theta}} - N_{\alpha m\downarrow_{\theta}}$  $N_{\alpha m\uparrow_{\theta}} + N_{\alpha m\downarrow_{\theta}}$ 



**Bell's correlation** 

## **CHSH type Bell's correlation**

#### **Current-current correlation with twisted spin orientation**

$$S(\theta,\varphi) \coloneqq \int dt \langle \delta I_{R1\theta}(t) \ \delta I_{R2\varphi}(0) \rangle$$
  
Current fluctuation:  $\delta I_{\alpha m \theta}(t) \coloneqq I_{\alpha m \theta}(t) - \langle I_{\alpha m \theta} \rangle$   
**CHSH type Bell's correlator** Four spin angle:  $\theta, \theta', \varphi, \varphi'$   

$$C = |F(\theta,\varphi) - F(\theta',\varphi) + F(\theta,\varphi') + F(\theta',\varphi')|$$
  

$$F(\theta,\varphi) \coloneqq \frac{S(\theta,\varphi) - S(\theta + \pi,\varphi) - S(\theta,\varphi + \pi) + S(\theta + \pi,\varphi + \pi)}{S(\theta,\varphi) + S(\theta + \pi,\varphi) + S(\theta,\varphi + \pi) + S(\theta + \pi,\varphi + \pi)}$$

Kawabata, JPSJ 70, 1210 (2001); Chtchelkatchev et al., PRB 66, 161320(R) (2002).

## **Upper bound of the CHSH Bell's correlator**



## **Orbital degenerate impurity Anderson model**



• particle-hole symmetric:  $\epsilon_d = -U/2 - (M-1)W$ 

symmetric coupling:  $v_L = v_R$ 

## **Many-body effect**

#### **Quasiparticle Hamiltonian**

**Replacement Electron in dot**  $d_{m\sigma} \rightarrow$  **Quasiparticle**  $\tilde{d}_{m\sigma}$ 

interaction  $U, W, J \longrightarrow \widetilde{U}, \widetilde{W}, \widetilde{J}$ 

energy level  $\epsilon_d \longrightarrow \tilde{\epsilon}_d$ 

tunneling  $v_{\alpha} \rightarrow \tilde{v}_{\alpha}$ 

Second order perturbation in local-Fermi-liquid interactions  $\widetilde{U}$ ,  $\widetilde{W}$ ,  $\widetilde{J}$ 

+ counter term to avoid overcounting

## **Maximum value of Bell's correlator**



## Large ferromagnetic coupling



## Larger than quantum upper bound?





 $S = 1, S_z = \pm 1$  state



## Triplet pair $S = 1, S_z = \pm 1$ state

Particles are generated in two directions in each channel.



Simple integration

$$N_{Rm\theta}(t,t+\tau) = \frac{1}{e} \int_{t}^{t+\tau} dt' I_{Rm\theta}(t')$$



Underestimated number of generated particles.

Conjecture

Normalization of Bell's correlator is failed.

 $C_{max} > 2\sqrt{2}$  (Tsirelson's bound)



#### Double quantum dot in local Fermi liquid state (Kondo state)

Exchange-type interaction



Quasiparticle triplet pair



Observable Bell pair

$$S = 1, S_z = 0$$