Nuclei: Quantum Finite Many-Body System with Two Fermions

The Overview of the Nuclear Structure and Excitations

2017 YITP Winter School, Kyoto University

December 18 - 22 Yoshitaka FUJITA RCNP Osaka University

Yasaka Shrine

Roles of 3 forces in Nuclear excitation & decay						
Strong:	nuclear reactions					
	[(p, p'), (α, α'),, (p, n), (³ He,t) etc] particle decays					
EM:	(e, e'), Coulomb ex., γ -decay					
Weak:	v-induced reactions, β -decay					
	$[(v_x, v_x'), (v_e, e),]$					
*if Strong can play a role, other two are hidden!						
*if EM	, Weak					
*if Strong and EM cannot play roles,						
then Weak will appear on the stage.						

Uniqueness of Nuclei						
Nucleus : Quantum Finite Many-body System with 2 Fermions a Quantum System where 3 interactions out of 4 are active Strong, Weak, EM (Gravitational force is too weak!)						
Conservation Laws are valid energy momentum angular momentum (<i>L</i> , <i>S</i> , parity) charge hadron number, lepton number,						

A value proportional to (matrix element)² $|<\mathbf{f} | Op | \mathbf{i} > |^2$ is called "reduced transition strength" *ex. B*(GT), *B*(F), *B*(*M1*), *B*(*E2*),....

*representing only the structure part for a specific operator!
*reaction mechanism parts (kinetic-energy, Q-value, mass A parts) are all removed!

Different Reaction Mechanism / How and Where you hit the bell!

how and where you hit =reaction mechanism

The sound from the bell is different how and where you hit! The strength of nuclear excitation is dependent on them!

***Operators causing
 Excitations
 (De-excitations)

Vibration Modes in Nuclei (Operators)												
	Microscopic classification of giant resonances											
		$\begin{array}{l} \Delta S=0\\ \Delta T=0 \end{array}$	ΔS = 0 ΔT = 1		∆S = 1 ∆T = 0	ΔS = 1 ΔT = 1	4	∆S=1: spin excitation				
	$\Delta L = 0$		Σau_i IAS			Σថ _ί τ _i GTR	f	۸T=1۰				
	2 nd order	$\sum r_i^2$ ISGMR	$\sum r_i^2 \tau_i$ IVGMR		$\sum r_i^2 \vec{\sigma}_i$ ISSMR	$\sum r_i^2 \vec{\sigma}_i \tau_i$ IVSMR		IV excitation (isospin related!)				
	∆L = 1		$\sum r_i Y_m^1 \tau_i$ IVGDR		$\sum r_i Y_m^1 \vec{\sigma}_i$ ISSDR	$\sum r_i Y_m^1 \vec{\sigma}_i \tau_i$ IVSDR	1.	()				
	2 nd order	$\sum r_i^3 Y_m^1$ ISGDR						Operators σ : spin				
	<u>∧</u> L = 2	$\sum r_i^2 Y_m^2$ ISGQR	$\sum r_i^2 Y_m^2 \tau_i$ IVGQR		$\sum r_i^2 Y_m^2 \vec{\sigma}_i$ ISSQR	$\sum r_i^2 Y_m^2 \vec{\sigma}_i \tau_i$ IVSQR	-	<i>τ</i> : isospin r : radial	<i>τ</i> : isospin <i>r</i> : radial			
	∆L = 3	$\sum r_i^3 Y_m^3$ ISGOR	$\sum r_i^3 Y_m^3 \tau_i$ IVGOR		$\sum r_i^3 Y_m^3 \vec{\sigma}_i$ ISSOR	$\sum r_i^3 Y_m^3 \vec{\sigma}_i \tau_i$ IVSOR		Y ′ _m : Spherical Harmonic				

Relationship: Decay and WidthHeisenberg's Uncertainty Principle $\Delta x \cdot \Delta p \approx \hbar$ $\Delta t \cdot \Delta p \approx \hbar$ $\Delta t \cdot \Delta E \approx \hbar$ Width $\Gamma = \Delta E$ *if:Decay is Fast,then:Width of a State is Wider !*if $\Delta t = 10^{-20} \sec \Rightarrow \Delta E \sim 100 \text{ keV}$ (particle decay $\Delta t = 10^{-15} \sec \Rightarrow \Delta E \sim 1 \text{ eV}$ (fast γ decay)

Summary: Operator, Width Both Decay and Reaction studies are important. What we observe = reaction mechanism ⊗operator ⊗structure Operators: IS, IV, Electric, Magnetic Life time ←) decay width ←) interaction strength Fragmentation Process of Collective Excitations