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Ski is fun !

The Nature is alive!
（自然は生きている！）

La Clusaz
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How is the layer (stratum) structure made?
- elementary school 6th grade -

1）侵食作用で、土砂が海や湖の底にたまります。
2）時には火山の爆発でも地層ができます。

学学研のホームページより

The Nature is alive!
（自然は生きている！）

La Clusaz

Pushed up from the bottom of the Sea 
to the top of the Mountain !

Explained by Plate Tectonics ! 
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Plate Tectonics
The model is build on the idea of 
“Continental Drift.”

(Oceanic Plate: heavier) (Continental Plate: lighter)

Eruption of Kilauea, Hawaii (1970’s)

地熱：ウラン等、放射性元素の核分裂の熱
Terrestrial heat: originates from Radio Activity like 235U



5

Supernova Cycle

Neutron-star Merger
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Layer Structure of Nature (by Glashow)

Particle

Molecule

Quark

1 fm

1.4 billion 
light years

Only Four Forces (Interactions) !
Conservation Lows are valid !

MAJOR FEATURES OF OUR SUN

T= ~107 K 
at the core
= ~1 keV
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1H (p)  4He:  Nuclear Reaction in a Star

弱い相互作用が関与する
崩壊

(Weak processes control
the reaction rate!)

Competition & Cooperation of 3-firces
-Stong, EM, and Weak Interactions-

p  +  p      2p      2H (=d) +  e+ +  e

proton

neutron

+   e+ +  e

Nuclear
force

Coulomb
Force

deuteron

Weak
Interaction

repulsive

attractive

* Three forces are active in the formation of deuteron!
* Only the Weak Int. can change protonneutron!
* After the -decay, the Coulomb F. disappears (or weaker).
 deuteron is formed !

-decay
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4-fundamental interactions (forces)

Strong int.*

Interactions Example Transmitter 

Nuclear Force Meson* (Gluon)

EM int.# Coulomb Force

Weak int.*

Photon#

Beta-decay W-, Z-boson*

Gravitational# Graviton#Apple falls!

*short-range #long-range *with mass #mass-less

Long and short-range forces
1-dimentional Universe

brightness of a star ∝1/R 2

i.e., inversely prop. to the expansion of the space

no spreading

1-dim. spread

light

2-dimentional Universe

3-dimentional Universe

2-dim. spread

distance R
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Fermion, Boson and Hadron

Hadrons consist of Quarks.

Proton is 
the lightest 
Baryon in the 
Universe !

each Nucleon consists of 3 Quarks

and the main part of the Strong Interaction caused 
by Gluons is used up to form a Nucleon (Meson) !

Quark

Quark

Quark

Meson

Meson

Meson
Gluon

Gluon

Gluon

Gluon

Gluon

MesonSpring: Gluon
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Image of Nuclei

Proton

Deuteron

12C

Effective 
nucleon-nucleon (N-N) force

i.e., Nuclear Force !

Strong Interaction is the source 
for binding 
1) Quarks (and forms a nucleon)
as well as 
2) Nucleons (and forms a nucleus)

Nucleon-Nucleon Interaction

Effective 
nucleon-nucleon (N-N)

interaction

attractive

repulsive

Range of the interaction
by pion exchange

Incompressibility
of Gluon
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Similarity of NN-force with 
the Van der Waals force 
(intermolecular force)

No Interaction

at a distance of 5nm or less

Attractive Interaction

at a very close distance

Repulsive Interaction

Simple atom

FC∝1/R2

Simple atom

FC∝1/R2

Importance of field (potential E): 
nucleon mass vs. quark mass

~10-15 m

nucleon mass ： ~940 MeV
pion mass： ~140 MeV

u-quark mass： 3 MeV
d-quark mass： 6 MeV

The quark mass is only ~1% of the nucleon mass！

Where is the other part of the mass (energy)?    (E = mc2)

proton =uud neutron =udd

Nucleon mass
=   kinetic energy of quarks

+ potential energy （gluon cloud）
+ （small）quark mass 

（quark size < 10-18 m）

Ans: Potential Field  The field of the strong interaction
（gluon field）carries the main part of the energy !

Nucleons are 
almost empty !
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How empty are we ?

“Matter” is almost empty !

~10-14 m~10-10 m < 10-18 m

Electron
< 2x10-20 m

Atom 
is almost 
empty !

Protons and Neutrons
are almost 

empty !

Roles of 3 forces

Strong: nuclear reactions
[(p, p’), (’),.., (p, n), (3He,t) etc]

particle decays
EM: (e, e’), Coulomb ex., -decay
Weak: -induced reactions, -decay

[(x, x’), (e, e-),…]

*if Strong can play a role, other two are hidden!
*if EM , Weak
*if Strong and EM cannot play roles, 

then Weak will appear on the stage.

in Nuclear excitation & decay
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***How Do We See Nuclei?

Uniqueness of Nuclei

Nucleus : 
Quantum Finite Many-body System with 2 Fermions

a Quantum System where 
3 interactions out of 4 are active

Strong, Weak, EM 
(Gravitational force is too weak!)

Conservation Laws are valid
energy
momentum 
angular momentum ( L, S, parity)
charge  
hadron number, lepton number, 
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How do we see nuclei?
How do we see Table Mountain?

Nuclear Models & Nuclear Structure

size difference
of 104

Atom Nucleus

*Movement of electrons in a 
Coulomb potential well  
defined by the nucleus in the 
center. 

Perturbation method works 
well for the calculation. 
Accurately described !

*Movement of nucleons in a self-
consistent potential formed by 
the moving nucleons themselves.
Nuclear force is not well defined.
Recoil effect should be taken into 
account. 

Taking the “essential parts”
Nuclear Models are constructed !
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Nuclear Chart

stable nuclei: 256
known nuclei: ~2,900

T1/2 is known: ~2,500
mass is known: ~1,800

unstable nuclei: ~7,000

each nucleus is unique
(a large variety!)

Neutron Number

P
ro

to
n 

N
um

be
r

How Nuclei are defined ?
*Quantum Finite Many-body System

=> quantum numbers are important
L, S, J, K, T

=> selection rules of Q-numbers are importnat
*Active forces in nuclei:

3 out of 4 fundamental forces
strength: strong >> electro-magnetic >> weak
time :      fast middle slow

(~10-20s) (~10-15s) (~10-1s)
*they struggle to make their territory larger !
phenomena from 3 forces can be combined 

for the study of nuclei !
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Uniqueness of Nuclei

Nucleus: Quantum Finite System
freedom: protons Z & neutrons N
further freedom: mesons
further more freedom: quarks

Shell model

**World of
Nuclear

Structure
Physics

Nuclear 
Reaction Study

Nuclear 
Decay Study

Quantum
Mechanics

Electro-
Magnetism

Nuclear
Structure
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Structure information form 
Transitions

*Transition strength: proportional to |<f| Op |i>|2

Hi |i>= Ei |i>, Hf |f>= Ef |f>

Nuclear Transitions give us Structure information

*Studied by: Nuclear Reactions, Decays
Reaction: Excitation + Spectroscopy
Decay: Spectroscopy

*Mode of Excitation  Op

For the study of Nuclear Structure

We have two different tools!
1) Decay Studies

-decay: in beam -study, source study 
-decay: -ray study, -delayed , p or n

2) Reaction Studies
Inelastic Scattering: simply giving Energy 
Charge Exchange Reaction:

charge-exchange & giving Energy
Pick-up Reaction, Transfer Reaction, …
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Decay and Reactions

-decay

(安定核)

(Z=13,N=14)

QEC

(不安定核)

0

4

8

12

基底状態

基底状態励起状態

励起状態

27Al 27Si
(Z=14,N=13)

-decay

-decay

Sn

n-decay

Sp

p-decay

E
xc

it
at

io
n 

E
ne

rg
y

Ground
State

Excited
States

Eout=Ein-Ex

Energy Spectrum

Direct Reactions with Light Projectiles

Projectile

Target

Coulomb Excitation

Elastic Scattering

Inelastic Scattering

Pick-up Stripping

Charge-exchange

Similarity with  decay!
by Berta Rubio

|i> |f>

interaction
(operator)
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Harmonic Oscillator

Quantum n-phonon Oscillation

from Wikipedia

Probability Densities

Classical

Imaginary

Real

Energy Eigenstate

Particles in a infinite potential

Energy
Levels

Existence
Probability

Wave
Functions

Wave
Functions
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Saturation of Nucleon Density in Nuclei
N

et
 d

en
si

ty
: 
(

r)
 =

 A
/Z

 
ch

(r
)

*Charge Density can be studied by (e,e’)

due to the “short range” nature of nuclear interaction

due to the intermediate mass of pion (~135 MeV)

R=r0A
1/3

Corresponding to 
the Fermi surface

Nuclear Potentials

Square Well

Harmonic Oscillator

Woods Saxon  
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Shell 
Model

Harmonic
Oscillator
potential

realistic
Woods-
Saxon

potential
introduction of

LS potential
(by Mayer & Jensen)

-divided into two ls partners-

1h ~ 8 MeV

Intermediate 
form !

Shell 
Model 

ex 208Pb
Z=82,N=126

magic-number
nuclei=

inert-gas
atoms

magic numbers

Strong LS force in Nuclei makes 
the particular magic numbers !
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Nuclear Binding Energy
-Shell Effect-

Fe,Ni

U, Th, Sn
Pb

Zigzag of the B.E. 

Nuclear Shell effect

0 50 100 150 200
MASS  NUMBER

10-2

10-1

100

101

102

103

104

105

106

107

108

109

1010

A
B

U
N

D
A

N
C

E
   

(S
i =

 1
06 )

H, He

C, O

Fe,Ni

Ba Pb

solar abundance distribution

Solar Abundance
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Degeneracy of single particle states

Harmonic
Oscillator

W.S
LS-

force

deformation

Q-numbers

Degeneracy

The Nature tends to avoid degeneracy
by breaking “symmetry” !

Nilsson Orbit in Deformed Nuclei

Nuclear Deformation

Magic Numbers depend on Nuclear Deformation !

sp
he

ri
ca

l
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***Rotational Bands
- in deformed nuclei -

Rotational Energy

in Classical Mechanics

E R = J 2 / 2I

in Quantum Mechanics

E R = J (J +1) / 2I

I : Moment of Inertia

Evolution of Nuclear Structure
-between two shell closures-
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Rotation of a Quantum System

Experimentally observed
“Moment of Inertia”

is smaller than is expected !

***Residual Interactions
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Note on SM & “Residual Interactions” (I)

Shells deep inside are treated as inert. 

Doubly magic nuclei form “inert core”. 
ex. 4He (N=Z=2), 16O (N=Z=8), 

40Ca (N=Z=20), 56Ni (N=Z=28)

In the Shell-Model nucleons are treated as independent. 

Single-particle phenomena are usually well described. 
ex. J values of ground states of odd nuclei

Nucleus J
3

2He1 1/2+

7
3Li4 3/2-

17
8O9 5/2+

41
20Ca21 7/2-

The J values : 
determined by 
Valence Nucleons !

Note on SM & “Residual Interactions” (II)

We notice the importance of the pairing interaction 

However, J values of g.s. in even-even nuclei are J=0+. 

In general, interactions that are not included in a model
are called “residual interactions”

1s1/2

proton neutron

=4He = 
J=0+

ex. “deuteron model”

J=0+

J=1+

ex.

unbound

bound=deuteron

Isovector T=1

Isoscalar T=0
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Pure Shell-Model & +Residual Int.

Filling assuming
“Ideal Shell-Model”

Filling of Shells

Shell-Model
+Residual Interaction

Shell-Model
States

(e.g. Pairing Int.)

Note on SM & “Residual Interactions” (III)

We first assume a model.  
ex. Harmonic Oscillator Model,

Shell Model. 

Remaining part of nucleon-nucleon interactions 
that are not included in the model are treated 

as “residual (or effective) interactions.”

Residual interactions between valence nucleons
play important roles to form nuclear structure. 

Mainly 2-body int., but also 3-body int. 
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***Observing Residual 
Interactions

-seeing is believing-

*** “Nuclear Excitations’’
“Nuclear De-excitations”
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Decay and Reactions

-decay

(安定核)

(Z=13,N=14)

QEC

(不安定核)

0

4

8

12

基底状態

基底状態励起状態

励起状態

27Al 27Si
(Z=14,N=13)

-decay

-decay

Sn

n-decay

Sp

p-decay

E
xc

it
at

io
n 

E
ne

rg
y

Ground
State

Excited
States

Eout=Ein-Ex

Energy Spectrum

Nuclear Reaction and Decay Studies
Nuclear Reaction

In-coming particle with Ein

Out-going particle with Eout

*out-going particles are analyzed
by energy
by angular distribution…

Decay Studies
 decay,  decay, particle decay

*unstable nuclei are first produced 
*then decays are measured

***Observation of Nuclear Excitations
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Direct Reactions with Light Projectiles

Projectile

Target

Coulomb Excitation

Elastic Scattering

Inelastic Scattering

Pick-up Stripping

Charge-exchange

Similarity with  decay!
by Berta Rubio

|i> |f>

interaction
(operator)

1p-1h Excitations (reaction)

*simple vibrational modes are excited

Eout=Ein-Ex

“energy spectrum”

1p-1h
excitation

interaction
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Z=82,N=126
208Pb

Basic 
Excitations:

1p-1h  
(inelastic)

p n

Nuclear Excitations by Reactions

(安定核)

(Z=13,N=14)

QEC

(不安定核 )

0

4

8

12

基底状態

基底状態

励起状態

励起状態

27Al 27Si
(Z=14,N=13)

Sn

Sp

非弾性散乱

(p, p')

( , ')

(e, e')

( , ')

荷電交換反応

(p, n )

( 3 He , t)

( , e-)

Ground
State

Ground
State

Excited
States

Excited
States

E
xc

it
at

io
n 

E
ne

rg
y

Charge
Exchange
Reaction

Inelastic
Scattering
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Z=83, N=125

1p-1h 
Excitations 

in 208Bi
(charge ex.)

not allowed!

not allowed!

1p-1h Excitations in 208Pb
(inelastic)                     (charge-exchange)

Z=82,N=126
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-decay

(安定核)

(Z=13,N=14)

QEC

(不安定核 )

0

4

8

12

基底状態

基底状態励起状態

励起状態

27Al 27Si
(Z=14,N=13)

-decay

-decay

Sn

n-decay

Sp

p-decayNuclear Decays

E
xc

it
at

io
n 

E
ne

rg
y

Ground
State

Ground
State

Excited
StatesExcited

States

1p-1h Excitations in  
42Ti: -decay            42Ca : CE Reaction

proton: f7/2 neutron f7/2

proton: f7/2 neutron f5/2

proton: f7/2 neutron f7/2

proton: f5/2 neutron f7/2

 decay and CE reaction make
Isospin Analogous transitions

(mirror transitions in proton and neutron)
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Structure information form 
Transitions

*Transition strength: proportional to |<f| Op |i>|2

Hi |i>= Ei |i>, Hf |f>= Ef |f>

Nuclear Transitions give us Structure information

*Studied by: Nuclear Reactions, Decays
Reaction: Excitation + Spectroscopy
Decay: Spectroscopy

*Mode of Excitation  Op

What do we observe?
Observed Strength 

= reaction mechanism
x  operator
x  structure

* integration of 3-quantities!

mechanism     operator (interaction)
 decay: simple EM
 decay: simple weak
reaction: complicated strong

*to study Structures, other 2 should be simple!
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Case 1 : -decay & -decay
*both have very simple mechanism.

(people even don’t think of “mechanism !”)

matrix element & t1/2

( 1 / t1/2) = Coup.Const. x PhaseSpaceFac. 
x |<f | Op | i >|2

*if Op is specified, w.f.(=structures) are studied !
(Op specification is not always easy!)

* highly Ex region cannot be reached !

*Operators are relatively simple!
Weak : Gamow-Teller, Fermi
EM : E1, E2,… M1, M2,…

Case 2 : Study by Nuclear Reactions
*we have to think of mechanisms seriously.

1) one-step, two-step,…
2) direct, exchange

*we have to think of operators (modes) seriously.
*separation of excitation modes is the main subject.

various reactions (e.g. charge exch., inelastic,..)
using different particles, 
at different incident energies.

angular distribution analysis ( “L” analysis)

*complicated, but highly Ex region can be reached!
(reaction study is a dirty business, but effective!)
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One-step, Two-step,… Multi-step,… Compound

Projectile

Target

interaction
(operator)

Inelastic 
Scattering

Charge-
Exchange 
Reaction

One-step Excitation

Two-step Excitation

....

Inelastic 
Scattering

Charge-
Exchange 
Reaction

At E > 100 MeV/u,
one-step becomes

dominant !

1p-1h Excitations (reaction)

*mesons are 
exchanged!

Eout=Ein-Ex

“energy spectrum”
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-decay transition rate and B(GT)

)GT(
1 2

2/1

B
K

f
t

-decay GT tra. rate =


* B(GT) : reduced GT transition strength

(matrix element)2 = |<f|| ||i>|2

Where

* 1/t1/2 : speed of decay rate

* f : phase-space factor
at Q=0  f = 0

constant !

0

0.2

0.4

0.6
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1
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f-
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ct
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ie
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Q
EC

=8.152 MeV

Simulation of -decay spectrum
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50Cr(3He,t)50Mn
E=140 MeV/nucleon
θ=0

o

g.
s.

(I
A

S
),

0+

0.
65

1,
1+

2.
44

1,
1+

3.
39

2,
1+

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6

β  
in

te
ns

ity
 (

re
la

tiv
e) β-decay: 50Fe --> 50Mn

*expected spectrum
  assuming isospin symmetry

E
x
 in 5 0Mn (MeV)

0.
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Y. Fujita et al. PRL 95 (2005)
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Reduced transition strength B (Op )

A value proportional to (matrix element)2

|<f | Op | i >|2

is called “reduced transition strength”
ex. B(GT), B(F), B(M1), B(E2),….

*representing only the structure part 
for a specific operator!

*reaction mechanism part is removed !
*coupling constant part is removed !

換算遷移確率

A Pump-up Dam

B(**)s are proportional 

to (matrix element)2

|<f | Op | i >|2
ex. B(GT), B(F), B(M1), B(E2),….

Corresponding to 
the SIZE of 

WATER PIPE !

Upper  
State


Lower  
State


DECAY

REACTION
If the pipe is horizontal (Q=0)

or upward    (Q<0),
there is no water flow. 

But a pipe does exist !

Q-value < 0
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Reduced transition strength B (Op )

A value proportional to (matrix element)2

|<f | Op | i >|2

is called “reduced transition strength”
ex. B(GT), B(F), B(M1), B(E2),….

*representing only the structure part 
for a specific operator!

*reaction mechanism parts  
(kinetic-energy, Q-value, mass A parts) 
are all removed!

***Operators 
and 

Nuclear Excitations

- Nuclear surface vibrations -
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***Operators = Hammers ??

Various Operators / Various Hammers!

The sound from the bell is different depending on hammers!

hammers
=operators

The mode of nuclear excitation is determined by an operator!

wooden hammers metal hammers
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Different Reaction Mechanism 
/ How and Where you hit the bell!

The sound from the bell is different how and where you hit!

how and where you hit
=reaction mechanism

The strength of nuclear excitation is dependent on them!

***Operators causing
Excitations 

(De-excitations)
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Vibration Modes in Nuclei (Schematic)

Vibration Modes in Nuclei (Operators)

T=1: 
IV excitation
(isospin related!)

S=1: 
spin excitation







 Yl
m : Spherical 

Harmonic

r : radial

 : spin
 : isospin

Operators
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***Giant Resonances***

Vibrational Modes
-collective excitations-

- absorbs a large fraction of 
the total sum rule strength -

Gamow-Teller Resonances for A>90 Nuclei

Ex= h
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**IS Electric Giant Resonances

Vibration Modes in Nuclei (Schematic)

IS-Giant
Quadrupole
Resonance

(GQR)
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Giant Resonance (GQR) by M. Itoh

1p-1h
Configu-
rations 
making

GQR 
in 208Pb
Z=82,N=126

Many 1p-1h configurations can make 2+ states !
Both proton & neutron configurations move “in phase.”

Therefore, such excitations are “Coherent”!
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Compression Modes of Nuclei
Macroscopic Picture/Hydrodynamic models/Giant Resonances
Coherent vibrations of nucleonic fluids in a nucleus.

Compression modes : ISGMR, ISGDR

The nucleus incompressibility:

KA=r2(d2(E/A)/dr2)r =R0

2

27
7 25
3

A F

ISGDR

K
E

m  r 


 ћ

2ISGMR
AE
r

K

m
 ћ

by M. Harakeh

Vibrational Modes in Nuclei (Schematic)

IS-Giant
Monopole
Resonance

(GMR)
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Giant Resonance (GMR) by M. Itoh

Vibration Modes in Nuclei (Schematic)

IS-Giant
Dipole

Resonance
(GDR)
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Vibration Modes in Nuclei (Schematic)

IV-Giant
Monopole
Resonance
(IVGMR)

Vibration Modes in Nuclei (Operators)
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IV Giant Monopole Resonance (IVGMR)
by P. Adrich

Vibration Modes in Nuclei (Schematic)

Fermi mode

()
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Vibration Modes in Nuclei (Schematic)

Gamow-
Teller mode

()

IV Spin Monopole Mode

WEB, Dpt. Phys. Tokyo U
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(p, n) spectra for Fe and Ni Isotopes

Fermi

GT

Fermi

GT

GT

Fermi

1p-1h
Configu-
rations 
making
GQR 

in 208Pb

Z=82,N=126

Many 1p-1h configurations can make 2+ states !
Both proton & neutron configurations move “in phase.”

Therefore, such excitations are “Coherent”!

Note: configurations are mainly 2h !
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Vibration Modes and Ex (Harmonic Osc.)

Sherical Harmonic
Y1 : L=1
Y2 : L=2
Y3 : L=3
:            

Radial
r1 : h=1
r2 : h=2, 0
r3 : h=3, 1
:

Operator and Excitations

main  sub

h~8 MeV

Isovector, Isoscalar Excitations

Target

IV interaction
(operator)

Inelastic 
Scattering

Charge-
Exchange 
Reaction

Inelastic 
Scattering

IV particles 

ex. p, 3He, t

IS particles 

ex. d, 4He

IS interaction
(operator)

always IV !IV excitations
(IS excitations)

IS excitations
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GRs observed in ’

Isoscalar (IS) GRs are 
at lower Ex than expected.

Note: GMR and GQR are
expected at 2h !

 is an isoscalar particle !

Role of Residual Int. (attractive)

1p-1h strength

collective 
strength

(GR)

st
re

ng
th

st
re

ng
th

Ex

Ex

Ex

negative=attractive

Graphical solution of the
RPA dispersive eigen-equation

Single particle-hole
strength distribution

Collective excitation formed
by the attractive residual interaction
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IV excitation: Gamow-Teller

Y. Fujita et al.,
EPJ A 13 (’02) 411.

H. Fujita et al.,
PRC 75 (2007) 034310

High resolution brings higher quality!

Isovector (IV) GRs are 
at higher Ex than expected.

Note: GTR ( excitation) 

is expected at 0h !

Role of Residual Int. (repulsive)

1p-1h strength

collective 
strength

(GR)

st
re

ng
th

st
re

ng
th

Ex

Ex

Ex

positive=repulsive

Graphical solution of the
RPA dispersive eigen-equation

Single particle-hole
strength distribution

Collective excitation formed
by the repulsive residual interaction
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***Decay and Widths of States

Relationship: Decay and Width
Heisenberg’s Uncertainty Principle








Et

px

Width   E
*if: Decay is Fast, 

then: Width of a State is Wider !
*if  t =10-20 sec  E ~100 keV (particle decay

t =10-15 sec  E ~ 1 eV (fast  decay)
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-decay

(安定核)

(Z=13,N=14)

QEC

(不安定核 )

0

4

8

12

基底状態

基底状態励起状態

励起状態

27Al 27Si
(Z=14,N=13)

-decay

-decay

Sn

n-decay

Sp

p-decay
Nuclear Decays

E
xc

it
at

io
n 

E
ne

rg
y

Ground
State

Ground
State

Excited
States

9Be(3He,t)9B spectrum (II)

Isospin selection rule prohibits 
proton decay of T=3/2 state!

Width   E
*if  t =10-18 sec  E ~1 keV (particle decay)
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IV excitation: Gamow-Teller

Y. Fujita et al.,
EPJ A 13 (’02) 411.

H. Fujita et al.,
PRC 75 (2007) 034310

In a high resolution study many states are observed!

Note: GTR ( excitation) 

is expected at 0h !

Spreading Width of an Excitation

Initially expected Excitation 
by a simple Direct Reaction

…
..

Mixing of |1p-1h> component
in many Eigen States
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Giant Resonances: Decay & Width

spreading width + decay widht

(p, n) spectra for A>90 Nuclei

GTR GTR

GTR GTR

Rapaport & Sugerbaker
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Formation of GT-GR in 90Nb

g9/2g9/2
g9/2g7/2

*in  90Zr90Nb transitions
 int. : repulsive nature
*both configurations : p-h nature (repulsive)

Summary: how do we see Nuclei?

*Quantum Finite Many-body System of Fermions 
=> quantum numbers are important

L, S, J,  T
=> selection rules of Q-numbers are important

*Active forces in nuclei:
3 out of 4 fundamental forces

strength: strong >> electro-magnetic >> weak
*they struggle to make their territory larger !
*studies using nuclear reactions and decays 
are fruitful.
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Summary: Operator, Width

What we observe =
reaction mechanism 

x operator  x structure

Operators: IS, IV, Electric, Magnetic

Life time  decay width  interaction strength

Both Decay and Reaction studies are important.

Fragmentation Process of Collective Excitations


