YKIS2007, Sawada

Pseudospin Soliton in the ν =1 Bilayer Quantum Hall State

A. Sawada

Research Center

for Low Temperature and Materials Sciences Kyoto University

Collaborators

Fukuda	(Kyoto Univ.)
K. Iwata	(Kyoto Univ.)

D. Terasawa	(Tohoku Univ.)
M. Morino	(Tohoku Univ.)
S. Kozumi	(Tohoku Univ.)
Z.F. Ezawa	(Tohoku Univ.)
Y. Hirayama	(Tohoku Univ.)

N. Kumada (NTT Basic Res. Lab.)

In press A. Fukuda *et al*. Phys. Rev. Lett. Cond-mat/0711.1216

Introduction – Quantum Hall Effect

Composite Boson Model

Composite Boson=One Electron+Odd Number Flux Quanta

Girvin and MacDonald Phys. Rev. Lett. **58**, 1252(1987) Ezawa *et al.* Phys. Rev. **46**, 7765(1992).

Quantum Hall State is incompressible (100K)

 $\Delta n \Delta \phi \ge h \quad \Delta n = 0, \ \Delta \phi = \infty,$

no coherence, no superconductivity

Bilayer System

 $\Delta n_{d} \Delta \phi_{d} \ge h$ Density Difference $\Delta n_{d} \ne 0$ Phase Difference $\Delta \phi_{d} \ne \infty$ Macro Coherence arise

Wen and Zee Phys. Rev. Lett. **69**, 1811(1992) Ezawa and Iwazaki, Phys. Rev. B **48**, 15189(1993)

Experiments of v=1 bilayer QHE

4. Experimental System

Dilution Refrigerator

- Lowest Temperature 6 mK
- •Cooling Power (@100 mK) 400 μ W
- •Highest Magnetic Field 15 T
- •Electrical Transport
- •Rotation of Sample

Sample

Magneto and Hall Resistance Field Dependence

Color-scale Plots of Magnetoresistance as a Function of Magnetic Field and Electron Density

Phase Boundaries

Definition of Boundaries

Related Theoretical Papers

Coherent System Pokrovsky-Talapov Form

$$\mathcal{E} = \int d^2 r \left[\frac{1}{2} \rho_{\rm s} (\boldsymbol{\nabla} \theta)^2 - \frac{t}{2 \pi l^2} \cos(\theta + \mathbf{Q} \cdot \mathbf{r}) \right]. \quad + \text{Capacitance energy}$$

Soliton State

Charge Imbalance

- A) C.B. Hanna, et al., Phys. Rev. B 63, 125305(2001).
- A) E. Papa and A.M. Tsvelik, Phys. Rev. 66, 155304(2002).
- A) S. Park, et al., Phys. Rev. B 66, 153318(2002).
- A) S. Park and K. Moon, Solid State. Comm. 132, 851(2004).
- A) Z.F. Ezawa, et al., Physica E in press.
- B) C.B. Hanna, Phys. Rev. B 66, 165325(2002).
- B) L.R. Radzihovsky Phys. Rev. Lett. 87, 236802(2001).
- B) M. Abolfath, et al. Phys. Rev. B 65, 233306(2002).

Soliton Phase

Two-axis Goniometer In Mixer of Dilution Refrigerator

Rotation of *θ*-Axis

Rotation of *\phi*-Axis

Anisotropic Conductance

In-plane Field Dependence of Anisotropy

Activation Energy Total Density and In-plane Field Dependence

Magnetoresistance as a Function of Density Imbalance Parameter and Total Density

Phase Diagram Theory and Experiment

CC: Commensurate Canted

IC: Incommensurate Canted

L. Radzihovsky, Phys. Rev. Lett., 87 236802(2001) M. Abolfath *et al.*, Phys. Rev. B, **65** 233306 (2002) Exact Diagonalization Calculation of Ground State Energy

 ρ_{ps} is Hartree-Fock value

Similar experimental result, Transition point, different

2

 $N_{\rm tot} = 1.2 \times 10^{11} {\rm cm}^{-2}$

 $\rho_{ps} \approx 0.10 \,\mathrm{K}$

4

5

6

d/l = 2.0

3

 $Q\xi_{\rm EX}$

Summary

•Magnetoresistance Peak (Soliton Phase) in Bilayer v=1Quantum Hall State

•Phase diagram of Bilayer v=1 Quantum Hall State in $B_{//} - n_t$ space

Anisotropic Magnetotransport to angle between B _∥ and I
→ Soliton Lattice Phase or Charge Imbalanced Phase
Soliton Phase is unstable when the density imbalance is large

•Charge imbalance exist or not?