The Pairing Mechanism of the Hubbard Model M. Jarrell

Collaborators: A. Macridin, B. Moritz, Th. Maier, P. Kent, D.J. Scalapino

University of Cincinnati

Kyoto, Japan, Nov. 2007

Outline

- Cuprates + Hubbard Model
- Hubbard Model
 - N_c=4
 - Larger Clusters?
 - The pairing mechanism.
- Hubbard-Phonon Model
 - Phonon-Enhanced spin Polarons
 - Phonons and T
- Conclusions and Outlook

Outline

- Cuprates + Hubbard Model
- Hubbard Model
 - N_c=4
 - Larger Clusters?
 - The pairing mechanism.
- Hubbard-Phonon Model
 - Phonon-Enhanced spin Polarons
 - Phonons and T
- Conclusions and Outlook
 University of Cincinnati

Cuprates: Unusual Superconductors

- Doped Mott insulator.
- d-wave SC order
- Non-Fermi liquid underdoped normal state
- Pseudogap
- Kinetically Driven Pairing?

S. Pan, dI/dV at resonance

University of Cincinnati

Alex Müller Georg Bednorz

Carrier concentration

Cuprate structure and phase

hole doping

CuO₂ plane

 $YBa_2Cu_3O_{7-\delta}, T_c=93K$

Cu

Ba

Modelling The Cuprates

(Zhang and Rice, PRB 1988, P.W. Anderson)

 $\mathcal{H}=-t\sum_{\langle ij
angle,\sigma}c_{i\sigma}^{\dagger}c_{j\sigma}^{}+U\sum_{i}n_{i\uparrow}n_{i\downarrow}$

Search for superconductivity in 2D Hubbard model

- Weak coupling (U/W << 1)
 - AF spin fluctuations mediate pairing with d-wave symmetry

(Bickers, PRL 1989; Monthoux, PRL 1991; Scalapino, JLTP 1999)

- RG → Groundstate d-wave superconducting (Halboth, PRB 2000; Zanchi, PRB 2000)
- Strong coupling (W/U << 1)
 - Finite size simulations of t-J model
 → Groundstate superconducting (Sorella, PRL 2002; Poilblanc, cond-mat 2002)
- Intermediate coupling (W ≈U)
 - Inconclusive!

Small Parameter?

BCS (conventional) SC:

Small parameter:

 $\omega_{\rm D}/E_{\rm F} \propto \sqrt{m/M} \ll 1$

Electron-phonon vertex:

Neglect classes of diagrams:

University of Cincinnati

Cuprate (unconventional) SC:

No small energy scale: $U/W \approx 1$

But in Cuprates:

Short-ranged AF correlations

Dynamical Cluster Approximation

DCA

Effective Medium

Short length
scales,
within the
cluster,
treated
explicitly.

- Long length scales treated within a mean field.
- $N_c = 1 DMF$, $N_c = \infty$, exact

University of Cincinnati

For a review of quantum cluster approaches: Th. Maier et al., Rev. Mod. Phys. 77, pp. 1027 (2005). 9

Outline

- Cuprates + Hubbard Model
- Hubbard Model
 - N_c=4
 - Larger Clusters?
 - The pairing mechanism.
- Hubbard-Phonon Model
 - Phonon-Enhanced spin Polarons
 - Phonons and T
- Conclusions and Outlook
 University of Cincinnati

4-site cluster DCA - 2D Hubbard model

Kinetic and Potential Energies

SC driven by kinetic energy gain D. Molegraaf, Science 2002

University of Cincinnati

 $N_{c}=4, U=W=2, t'=0$

Energy of the SC transition

(Brinkman, Hirsch)

Pairing due to potential energy gain University of Cincinnati

13

But ...

Antiferromagnetism

 Finite T order in contradiction to Mermin-Wagner theorem

Superconductivity

- N_c=4 results represent mean-field result for d-wave order
- No fluctuations of d-wave order parameter included

Questions:

- d-wave superconductivity in larger clusters ?
- Exact limit $N_c \rightarrow \infty$?
- True nature of the pairing mechanism

Outline

- Cuprates + Hubbard Model
- Hubbard Model
 - N_c=4
 - Larger Clusters?
 - The pairing mechanism.
- Hubbard-Phonon Model
 - Phonon-Enhanced spin Polarons
 - Phonons and T
- Conclusions and Outlook
 University of Cincinnati

Scaling in Cluster Size (Betts Clusters)

- Scaling is difficult •There are few clusters with the same symmetry as the lattice
- Solution: Betts clusters, selected for
 - •Neighbors in a given shell
 - •Symmetry
 - •Squareness

University of Cincinnati

(Betts, Can. J. Phys. 1999) 16

Betts Clusters: Neighbor Shells

- In the lattice, the shells have 4, 8, 12... neighbors
- Good scaling clusters emulate the lattice
- Betts clusters have the smallest number of imperfections in filling

Antiferromagnetism: Cluster size dependence

• Scaling Ansatz $\xi(T_N) = L_c$, or $T_N = A/(B + \ln(N_c)/2)$

• $T_{\rm N} \rightarrow 0$ logarithmically with $N_c \rightarrow \infty$ (SRW 89, Hirsch 87)

• N \geq 8 lie on line (not true w/o Betts clusters) University of Cincinnati (Th. Maier, PRL)₈

d-wave order in repulsive 2D Hubbard model

• Dilemma:

- d-wave order parameter non-local (4 sites)
- Expect large size and geometry effects in small clusters

Number of independent neighboring d-wave plaquettes:

$$Z_d = 1$$
 $Z_d = 2$ $Z_d = 3$

Inverse d-wave pairing susceptibility (U=4t; n=0.90)

University of Cincinnati

UNIVERSITY OF Cincinnati

Outline

- Cuprates + Hubbard Model
- Hubbard Model
 - N_c=4
 - Larger Clusters?
 - The pairing mechanism.
- Hubbard-Phonon Model
 - Phonon-Enhanced spin Polarons
 - Phonons and T
- Conclusions and Outlook
 University of Cincinnati

The Mechanism

The Mechanism

Channel Decomposition of Pairing Vertex

Outline

- Cuprates + Hubbard Model
- Hubbard Model
 - N_c=4
 - Larger Clusters?
 - The pairing mechanism.
 - Way to fit experimental data?
- Hubbard-Phonon Model
 - Phonon-Enhanced spin Polarons
 - Phonons and T

University of Cipcinnatiand Outlook

High-Energy Kink (overdoped Bi2201)

University of Cincinnati Meevasana et al., cond-mat/0612541

High-Energy Kink in the 2D Hubbard Model

n=0.8, U=8t, cluster 16B, E_{kink} - t $(0,0) \rightarrow (\pi,\pi)$ $(0,0) \rightarrow (\pi,0)$ b a 2 -2 E/t 1 -4 0 DCA -6 (0,0)(0,0)(π,π) (π,0

A. Macridin PRL to appear University of Cincinnati

•Kink at $E_{kink} \approx -t$ •(0,0) Dispersion below bare band

RSO Applied to Superconductivity

Possible method to analyze experiment

- Extract spin S(q,ω) from neutron scat.
 - use to calculate $\chi(k,\omega) = \chi^{s}_{c}$
- Compare to ARPES to determine U Ū X^s
- Use interaction in a DCA extension of Migdal Eliashberg (J. Hague) to calculate superconducting properties $\Sigma = \sqrt{\chi_c^s} \sqrt{\chi_c^s}$
 - Test 1-band model and spin-fluctuation mediated pairing for the cuprates.

University of Cincinnati

0

a

U

Outline

- Cuprates + Hubbard Model
- Hubbard Model
 - N_c=4
 - Larger Clusters?
 - The pairing mechanism.
- Hubbard-Phonon Model
 - Phonon-Enhanced spin Polarons
 - Phonons and T
- Conclusions and Outlook
 University of Cincinnati

Hubbard Model: Nearly AF Metal

Holstein Phonons

- Simplest Model, Hubbard+Holstein Phonons
- Don't contribute to the d-wave pairing channel
- $\lambda = g^2 / (8 \text{tm} \, \omega^2)$

Experimental Evidence for Strong EP Coupling

Spin Properties

Neel Transition and Quasiparticle Fraction

University of Cincinnati

Single-Particle Properties

Holstein **Phonons** suppress - N(0)U eff – kinetic energy gain at low T **PG doesn't** change much

Charge Susceptibility

- Phonons Enhance the charge susceptibility
- phase separation
 for λ > 0.7
 - Narrow band of charge carriers in the dynamic susceptibility
 - polarons
 - dramatically enhanced by non-local correlations

Outline

- Cuprates + Hubbard Model
- Hubbard Model
 - N_c=4
 - Larger Clusters?
 - What is the pairing mechanism?
- Hubbard-Phonon Model
 - Phonon-Enhanced spin Polarons
 - Phonon Suppression of T

Conclusions and Outlook
 University of Cincinnati

What About Pairing

- Phonons strongly enhance AFM at finite doping
 - Should enhance the spin mediated paring interaction
- Phonons suppress the QP fraction Z₀ and N(0)
 - **Should suppress T**_c
- Which effect wins?

Breathing and Buckling Phonon modes

R.J. McQueeney, PRL,87 077001

Breathing and buckling modes

- breathing +-
- buckling ++
- Identified in experiment
- Found to couple strongly to doped carriers

 (\mathbf{n})

hole

 $\lambda = g^2 / (2 \mathrm{tm} \, \omega^2)$

Same evidence of polaron formation

Phonons Appear to Suppress Pairing

University of Cincinnati HH=Holstein, HBC=Buckling, HBR=Breathing 43

Why do phonons suppress Tc?

Enhance the d-wave pairing interaction V_d

Suppress N(0) (Z₀)

The latter appears to win!

University of Cincinnati H=Holstein, BC=Buckling, BR=Breathing

Conclusions

- Hubbard Model Captures Cuprate Phenomena
- N_c=4 mean field = qualitative description of cuprates.
- Larger (Betts) clusters.
 - $T_c(N_c) \approx \text{constant within error bars.}$
 - Pairing from Spin channel.
- Local Phonons
 - enhance AFM and d-wave pairing interaction V_d
 - suppress Z₀, N(0), ... polarons
 - _ suppress T

University of Cincinnati http://www.physics.uc.edu/~jarrell 45

High Energy Kink in the Self Energy

- Features below kink energy E_{kink} depend weakly on K
- QP Peaks in A(k,ω) when Re(ω +μ - E(k) - Σ(k,ω))=0
 - intersection of black and blue lines
 - -ImΣ(k,ω) large for $\omega < E_{kink}$
 - Abrupt change in slope of ReΣ(k,ω) for ω <E_{kink} signals the start of the waterfall structure in spectra.
- Dispersion for large |ω| falls below bare result by causality. Here, ReΣ(k,ω)
 ~ a/ω, where a=∫dω (-1/π) ImΣ(k,ω) >0

HE Spin Excitations and doping

