Kyoto Finite-Temperature November 14, 2007 Mott Transition in **2D Frustrated Hubbard Models** Norio Kawakami (Kyoto)

YKIS 07

Collaborator s T. Ohashi (Osaka) H.Tsunetsugu (Tokyo) T. Momoi (Riken)

MIT in organic materials

MIT in organic materials

Outline

Frustrated Electron Systems in 2D

Mott transition with Frustration

Kvoto

University

京都

Common to Mott transition with frustration

ExampleReentrant behavior κ -(BEDT-TTF)2-Cu[N(CN)2]Cl

Outline

Frustrated Electron Systems in 2D

Mott transition with Frustration

Kvoto

University

YKIS 07 Kyoto November 14, 2007

Ohashi et al. PRL (2006)

. . . .

Kagome-lattice systems Mott transition with Frustration

Ohashi et al. PRL (2006)

2D correlated systems Frustration

Kagome lattice Hubbard model

Imai, NK, Tsunetsugu(2003) FLEX Koshibae - Maekawa (2003) Co superconductor Bulut, Koshibae, Maekawa (2005) QMC

3-band system

k_v

Co oxide Supercoductor

Kvoto

University

Metallic state near MIT?

Ohashi et al. (2006) Cluster DMFT Kuratani et al.(2006) Variational MC

Kyoto University 2D correlated systems Frustration Kagome lattice Hubbard model Imai, NK, Tsunetsugu(2003) FLEX Koshibae - Maekawa (2003) Co superconductor Bulut, Koshibae, Maekawa (2005) QMC Co oxide Supercoductor 3-band system Metallic state near MIT? Ohashi et al. (2006) Cluster DMFT k_v Kuratani et al.(2006) Variational MC Frustration

Cluster DMFT

YKIS 07 Kyoto November 14, 2007

Ohashi et al. PRL (2006)

Anomalous metallic November 14, 2007 YKIS 07 Kyoto November 14, 2007 Near Mott phase

Ohashi et al. PRL (2006)

.....

What is expected ?

Enhanced pair correlations

Masked by itineracy

Very low energy scale

To avoid strong frustration

Kyoto

hidden

University

What is expected ?

Enhanced pair correlations

Masked by itineracy

Very low energy scale

To avoid strong frustration

Slight deviations

Filling control

Temperature, etc

Kvoto

hidden

University

Revive pair correlations

What is expected ?

Enhanced pair correlations

Masked by itineracy

Very low energy scale

To avoid strong frustration

Slight deviations

Filling control

Temperature, etc

Kvoto

hidden

University

Revive pair correlations

Unusual phenomena?

YKIS 07 Kyoto November 14, 2007

YKIS 07 Kyoto November 14, 2007

Magnetic Instability ?

1015 3015

Dominant Spin Configurations

Mott phase

Triangular Lattice

YKIS 07 Kyoto November 14, 2007

Ohashi et al. (2007)

Triangular Lattice

YKIS 07 Kyoto November 14, 2007

Reentrant transition

Ohashi et al. (2007)

Organic conductors

♦ Correlated Electron Systems

♦ Simple electronic structure in k space

highly compressible

Pressure-induced !

Mott transitions

Superconductivity

Magnetism

Pressure-induced Mott transition

Band-width control Kanoda group

Kyoto

University

Quasi-2D organics κ-(ET)₂Cu[N(CN)₂]Cl

Cu[N(CN)₂]Cl

ET molecules

κ-(ET)₂X organics Triangular lattice

Kyoto

Layer structure

κ-(ET)₂X organics Triangular lattice

Kyoto

Layer structure

κ-(ET)₂X organics Triangular lattice

Kyoto

Layer structure

Kyoto University

 κ -(BEDT-TTF)₂-Cu[N(CN)₂]Cl

F. Kagawa et al., PRB 69, 064511 (2004)

Kyoto University

κ -(BEDT-TTF)₂-Cu[N(CN)₂]Cl

F. Kagawa et al., PRB 69, 064511 (2004)

Basic & Naive question

Basic & Naive question

Basic & Naive question

YKIS 07 Kyoto November 14, 2007

Cellular DMFT treatment VKIS 07 Kyoto November 14, 2007

Reentrant Mott transition Magnetic transition

Nonmonotonic T-dependence

Celluler DMFT

Double occupancy U/t = 8

Nonmonotonic T-dependence

Celluler DMFT

Double occupancy U/t = 8

Kyoto University

Nonmonotonic T-dependence

Celluler DMFT

Double occupancy U/t = 8

Kyoto

Kyoto

Kyoto

Kyoto

Kvoto

Kyoto

k-dependent spectral function

Kyoto

k-dependent spectral function

Kyoto

Phase diagram

Kanoda group

Kyoto

University

 κ -(BEDT-TTF)₂-Cu[N(CN)₂]Cl

Phase diagram

Kanoda group

Kyoto

University

κ -(BEDT-TTF)₂-Cu[N(CN)₂]Cl

Phase diagram

Kanoda group

Kyoto

University

 κ -(BEDT-TTF)₂-Cu[N(CN)₂]Cl

Kyoto

Kyoto

Kyoto

YKIS 07 Kyoto November 14, 2007

Magnetic instability

CONTRA TONIES

PI

PI

IJ

Magnetic instability

ordering at finite T Cellular-DMFT

Frustration: Mott transition survives !

Frustration ∞ dimensions

DMFT: frustrated Bethe lattice

Zitzler et al. Phys. Rev. Lett. 93 016406

Frustration∞ dimensions

DMFT: frustrated Bethe lattice

Zitzler et al. Phys. Rev. Lett. 93 016406

Frustration∞ dimensions

DMFT: frustrated Bethe lattice

Zitzler et al. Phys. Rev. Lett. 93 016406

Frustration∞ dimensions

DMFT: frustrated Bethe lattice

Zitzler et al. Phys. Rev. Lett. 93 016406

Comparison: frustrated systems in infinite dimensions

Kyoto

Kyoto

q-dependent susceptibility

Kyoto

q-dependent susceptibility

Kyoto

Kyoto University q-dependent susceptibility Inherent in nonmagnetic insulator ! **t'/t=0.8** U/t=9, T/t=0.2 1 crossover 1st order 0.8 Incommensurate Γ_N χ(q) 0.6 15 0.4 M 10 5 0.2 magnetic 0 k, 10 8 \mathbf{k}_{x} 9 **U/t** peak at $q \sim (0.75 \pi, 0.75 \pi)$ not diverge 京都

YKIS 07 Kyoto November 14, 2007

.....

YKIS 07 Kyoto November 14, 2007

What happens ? control frustration by changing t'/t

THE THE

Summary

Mott transitions: frustrated systems

Kyoto

University

Anomalous behavior near MIT (finite T)

Summary

Mott transitions: frustrated systems

Kvoto

Summary

Mott transitions: frustrated systems

Kvoto

YKIS 07 Kyoto November 14, 2007

Thank you for your attention !

THE PHE