

Electrical Control of Electron Spin and Nuclear Spin in Quantum Dots

S. Tarucha

Dep. of Applied Physics. The University of Tokyo ICORP-JST INQIE-MEXT

Tokyo-UA. OiwaICORP-JSTY. TokuraNTTM. YamamotoK. HitachiT. ObataT. ObataJ. Baugh (Waterloo-U)Y-S ShinS. YoshidaRiken/ICORP K. OnoINQIET. Kodera

Spin-based QC with QDs: Loss-DiVincenzo '98

QD holding just an electron spin

Qubit = $a|\uparrow > + b|\downarrow >$

ST et al. *PRL* 96 Ciorga et al. *PRL*02

Robust spin degree of freedom

 T_1 = msec to sec

Triplet to Singlet: Fujisawa, ST et al. *Nature* 02 Zeeman states: Amasha et al. *PR* 06

Entanglement linked to Fermionic nature

 $H_{\text{int}} = J_{exch} S_1 S_2$

SWAP: Petta et al. *Science* 05 Heitler-London: Hatano, ST et al. *Science* 05

Single spin readout

Pauli spin blockade: Ono, ST et al. *Science* 02 Spin rotation using P-SB: Koppens et al. *Nature* 06 Zeeman splitting: Elzerman et al. *Nature* 05

Coherent spin manipulation

SWAP-qubit: Petta et al. *Science*05 On-chip coil qubit: Koppens et al. *Nature* 06 SO-EDSR qubit: Nowack *et al.*, arXiv0707.3080

Progress Necessary for Spin Qubits with QDs

Fast, reliable readout

Single spin...10 kHz to MHz (charge) using QPC Entanglement....Cross-correlation of shot noise

CNOT, Error correction,

Outline

Spin control with GaAs quantum dots

Voltage driven electron spin resonance and spin qubits with quantum dots

Spin rotation using a slanting Zeeman field formed by a micro-magnet

Two-spin addressing

Micro-magnet design for scalability

Electrical control of nuclear spin polarization

Voltage-controlled hyperfine coupling in the Pauli spin blockade Tunable polarization up to ~50 % Possible approach to full polarization

Concept of Spin Qubit = ESR

ESR to Address Individual Spins

"Global dc B_z and local ac B_x for single spin resonance"

Voltage-driven Single Spin Resonance

Exchange control in a double quantum dot (inter-dot coupling gate modulation) : Spin qubit with a basis of two-spin states _____ Exchange _____

J. Petta et al. Nature 05

Electric dipole spin resonance (EDSR) via local interaction between electron spin and electric field

Spin-orbit interaction

V.N. Golovach et al. PRB 06 (Theory)

K.C. Nowack et al., arXiv0707.3080

Inhomogeneous hyperfine interaction Laird *et al.*, arXiv 0707.0557

We proposed....

Electron oscillation in a slanting Zeeman field formed by a micro-magnet Y. Tokura, ST, et al. *PRL* 06 M. Ladriere, ST et al. *APL* 07 (Theory)

Experiment....This talk

ESR in a Slanting Magnetic Field

Up and down quasi-spins

$$\begin{aligned} |G_{-}\rangle &= |1\uparrow\rangle + C_{1\uparrow}|2\downarrow\rangle \\ |G_{+}\rangle &= |1\downarrow\rangle + C_{1\downarrow}|2\uparrow\rangle \\ |C_{1}| <<1 \end{aligned}$$

Proposal:

Y. Tokura, ST *PRL* 06 M. Pioro-Ladriere , ST *APL* 07

Quantum picture

Electron Motion in a Slanting Magnetic Field

Slanting Field between Ferromagnets

Device

Few-electron lateral QD

Isolation of single electrons

M. Ciorga et al., PRL 88 256804 (2002)

Pauli spin blockade

ESR detection

Koppens et al. Nature 442 766 (2006)

• ESR gate

AC electric field *E*_{AC}

MPL et al. APL 90 024105 (2007)

 $V_{AC} = V_0 \sin(2\pi ft)$

Stray Magnetic Field Profile: Simulation

Static Zeeman field: $B_0 + \delta B_0$ Slanting Zeeman field: b_{SL} \rightarrow Shift of f_{ESR} In the low B_0 range \rightarrow Change of I_{ESR}

Stray field of micro-magnet

Formation of Double Quantum Dot

 $V(t) = V_0 \sin(2\pi f t)$

Dot 1: Target Dot 2: Detector

By adjusting two side gate voltage, A double quantum dot is formed.

Three contributions coexist...

$$B_{\rm ESR} = B_{\rm Slant} + B_{\rm Hyper} \pm B_{\rm SO}$$

±: depending on crystal orientation)

They have different dependencies on B_{ext} and E_{ext}can be distinguished

Two Spins in a Displaced Ferro-magnet

Micro-magnet Design for Scalability

Nuclear Spin Effect

Hyperfine coupling

 $H_{\rm HF} = A \left| \emptyset \left(\mathbf{x} \right)^2 \left(\underbrace{I_+ S_- + I_- S_+}_{2} + I_Z S_Z \frac{1}{j} \right) \right|$ Flip-flop Recovery due to short lifetime

GaAs quantum dot

50 nm

Nuclear spin polarization up to ~60 % J. Baugh, ST... PRL 07

Accumulation due to long lifetime (~ min.)

Dynamical nuclear spin polarization, which imposes an extra magnetic field on the electronic spinOverhauser effect

Pauli Spin Blockade in Double QD

How to electrically control hyperfine coupling

How to control nuclear spin coupling

Nuclear Spin Depolarization by CW NMR RF

Hysteresis=DNP? — *Test using NMR to depolarize the nuclei Weak nuclear spin pumping*

|T_>-|S> Degeneracy Depending on B_{ext}

Nuclear Field due to DNP

Control of Nuclear Spin Polarization

Conclusion

Voltage-driven single spin resonance

using a slanting Zeeman field

- Developed a spin resonance technique with QDs using a micromagnet
- Demonstrated two-spin addressing, which can provide a technique for multiple qubit operation ... good for scalability

Electrical control of dynamical nuclear polarization

- Demonstrated tunable polarization from 0 to ~50 %, using a voltagecontrolled exchange coupling and Pauli spin-blockade
- Discussed a possible approach for full polarization