Real and futuristic spin qubits – from GaAs to graphene

Yukawa International Seminar Kyoto, November 2007

Lieven Vandersypen

Delft University of Technology

Single-electron spin resonance

Driven rotations of a single electron spin

Koppens, Buizert, Tielrooij, Vink, Nowack, Meunier, Kouwenhoven, LMKV, Nature 2006

Electrical single-spin control

Nowack, Koppens, Nazarov, LMKV, Science Express 2007

Easier local addressing All-electrical control possible

Mechanism: spin-orbit interaction

$$H_{R} = \alpha(\sigma_{x}p_{y} - \sigma_{y}p_{x}) + \beta(\sigma_{x}p_{x} - \sigma_{y}p_{y})$$

Rashba Dresselhaus

Theory: Golovach, Borhani, Loss, PRB 2006

 $B_{\text{ext}} / E(t)$

Ramsey fringes and dephasing

Spin echo – unwind dephasing

Nuclear spin dynamics

- nuclear-nuclear flip-flops through direct dipole-dipole coupling (> 100 μ s)
- electron-nuclear flip-flops (strongly suppressed for $B \neq 0$)
- nuclear-nuclear flip-flops through two virtual electron-nuclear flip-flops

Theory: de Sousa, das Sarma, PRB 2003 Coish, Loss PRB 2004 Witzel, de Sousa, das Sarma, PRB 2005

Yao, Liu, Sham, PRB 2006 Deng & Hu, PRB 2006

 $T_{2,echo}$ depends on *timescale* (t_{nuc}) and magnitude ($1/T_2$ *) of nuclear field fluctuations

. . .

E.g. can have $t_{nuc} = 10$ sec, $T_2^* = 10$ ns, giving $T_{2,echo} = 10 \ \mu s$

Klauder & Anderson, PR 1962

Faster charge detection (cryogenic amplifier)

Vink, Nooitgedagt, Schouten, LMKV, APL 2007

Other decoherence mechanisms

virtual tunneling processes to the reservoirs

- was limitation for max. power in ESR
- can be suppressed by raising tunnel barriers

spin-orbit interaction

 $T_2 = 2 T_1$ Golovach, Khaetskii, Loss, PRL 04

Spin-orbit with phonons dominates T_1

Meunier, Vink, Willems v Beveren, Tielrooij, Hanson, Koppens, Tranitz, Wegscheider, Kouwenhoven, LMKV, PRL 2007

Theory: Golovach, Khaetskii, Loss, PRL 2004

Spin qubits in quantum dots – status

See also Hanson et al, Rev. Mod. Phys. 2007

Initialization 1-electron, low *T*, high B_0 duration ~ 5 T_1 ; 99% fidelity ?

Read-outvia spin-charge conversionduration ~ 100 μs;82-97% fidelity

1-qubit gate electron spin resonance gate duration ~ 25 ns; observed 8 periods

2-qubit gate exchange interaction gate duration ~ 0.2 ns; observed 3 periods

Decoherence $T_1 \sim 1 \text{ ms} - 1 \text{ sec}$ spin-orbit + phonons $T_2^* \sim 20 \text{ ns}; T_2 > 1 \mu \text{s}$ nuclear spins

Main themes in the coming years

Hyperfine in graphene is tiny

 Only 1% of carbon atoms have a nuclear spin (¹³C) Furthermore, 99.9% pure ¹²C is easily available, and synthetic grain and synthe

2s

 $2p_z$

Spin-orbit in graphene is weak as well

Carbon is a light element

sublattice spin $H_{SO} = \lambda_{SO} \sigma_z s_z \tau_z$ valley $\lambda_{SO} \sim 0.5 \,\mu\text{eV}$ $H_R = \lambda_R (\sigma_x s_y \tau_z)$ Min et al, cond-mat/(Yao et al, cond-mat/(Huertas-Hernando et al, cond-mat/0606580

But: spin flip time in 2D graphene ~ few 100 ps Trombos et al., Nature 2007

Compare GaAs:

$$H_D = \beta (-\sigma_x p_x + \sigma_y p_y)$$
$$H_R = \alpha (\sigma_x p_y - \sigma_y p_x)$$

 $\beta p_F \sim 150 \ \mu eV$ (*n*=10¹¹cm⁻²)

comparable

Graphene quantum dots ?

Top gating

by far preferred (control and tunability)

Electrostatic barriers and Klein tunneling

No electrostatic confinement! Need to create a semiconducting gap

Katsnelson, Novoselov, Geim, Nature Phys. 2006

Bandgap from confinement (ribbons)

Tight binding

Nakada et al., PRB 54, 17954, 1996

Zigzag edges: always metallic (edge states at zero energy)

Gap from spin-ordering at edges ?

Son, Cohen, Louie PRL 2006

<u>Armchair edges</u>: insulating, except for N=3n-1

Always gap from lattice deformation at edges ? Son et al., PRL 2006

Bandgap in ribbons (1)

Wehenkel, Heersche et al, See also Han et al, PRL 2007

Bandgap in ribbons (2)

Delft (Wehenkel, Heersche et al)

Columbia, PRL 2007

Always gapped even though edges were not controlled

In addition: charging contribution

Extracted gap size versus ribbon width

Bandgap in asymmetrically doped bilayers

Chemical doping of top layer (SiC substrate)

Electric control of bandgap and Fermi level

C

Low temperature measurements of bilayer graphene

Electrically induced insulating state

Oostinga, Heersche, Liu, Morpurgo, LMKV, arXiv:0707.2487

Temperature dependence peak resistance

55 mK – 5 K range: variable-range hopping (for highest fields) Points at gap with localized states inside the gap (disorder)

Oostinga, Heersche, Liu, Morpurgo, LMKV, arXiv:0707.2487

Magnetoresistance in graphene rings

Procedure: lock-in two-terminal current-biased

Observations:

- Weak localization (probably)
- Aperiodic conductance fluctuations
- Aharonov-Bohm conductance oscillations

Russo, Oostinga, Wehenkel, Heersche, Sobhani, LMKV, Morpurgo, arXiv:0711.0479

Temperature dependence AB amplitude

Expect $\Delta G_{\rm rms} \sim \exp[-\pi R/L_{\phi}(T)] (E_{Th}/kT)^{-1/2}$

Observe thermal averaging (note $E_{th} \sim 10 \,\mu\text{eV} < 150 \,\text{mK} \sim k_B T$) Indicates $L_{\phi} > \text{few } \mu\text{m}$

See also WL data of Tikhonenko et al, arXiv:0707.0140

Magnetic field dependence AB amplitude

Message for graphene spin qubits

It may be possible to define dots using electrostatic gates

Role of disorder to be explored further

Spin coherence time could be very long

People and collaborations

GaAs spin qubits Jeroen Elzerman (ETH) Ronald Hanson (UCSB) Laurens Willems v Beveren (UNSW) Josh Folk (UBC) Frank Koppens Ivo Vink Christo Buizert (U Tokyo) Klaas-Jan Tielrooij (AMOLF) **Tristan Meunier** Katja Nowack Tjitte Nooitgedacht Han Keijzers Leo Kouwenhoven Lieven Vandersypen

External collaborations -

Loss group (Basel) Nazarov (Delft) Rudner & Levitov (MIT) Wegscheider (Regensburg) Tarucha group (Tokyo)

Graphene

Hubert Heersche Pablo Jarillo-Herrero (Columbia) Jeroen Oostinga Xinglan Liu Alberto Morpurgo Lieven Vandersypen

