

Introduction to Graphene Andre Geim

in collaboration with <u>K. Novoselov</u>, S. Morozov, F. Schedin P. Blake & M. Katsnelson

MOTHER OF ALL GRAPHITIC FORMS

Graphite

PRESUMED NOT TO EXIST IN THE FREE STATE Manchester 2004

graphene

Carbon Nanotube

from 1952 to lijima 1991 Buckyballs

Kroto et al 1985

Extracting a Single Plane

LAYERED MATERIALS

SLICE DOWN TO ONE ATOMIC PLANE?

Two Dimensional Crystallites

07

one-atom-thick single-crystals

graphene lattice in SuperSTEM

2D crystals first demonstrated - Manchester, Science '04

Graphene Devices

➢optical image

SEM image
design
contacts and mesa

Exceptional Quality

on submicron scale under ambient conditions

graphene: carrier mobility at 300K <u>currently</u>: up to 15,000 cm²/V·s <u>intrinsic</u>: >200,000 cm²/V·s

Intrinsic Mobility

resistivity consists of long ($\sigma \propto n$) and short (const ρ) range contributions

Intrinsic Mobility

resistivity consists of long ($\sigma \propto n$) and short (const $\delta \rho$) range contributions

phonons are short-range scatterers contributing $\delta \rho < 50 \Omega$ at 300 K (maybe, "extrinsic" phonons)

phonon-limited mobility >200,000 cm²/V·s at 300K

with charged impurities at <10nm spacing Manchester, Nature Mat '07

step-like changes near zero concentration Manchester, Nature Mat '07

EXTREMELY ELECTRONICALLY QUIET: FEW UNSTABLE DEFECTS

Band Structure of Graphene

E=pv_F F S V K Kx

> effective mass $E = m_c v_F^2$ $v_F = 10^6$ m/s ±5%

 $B_{\rm F} = (\hbar/2\pi e)S$ and $m_{\rm c} = (\hbar^2/2\pi)\partial S/\partial E$

experimental dependences $B_{\rm F} \sim n$ and $m_{\rm c} \sim n^{1/2}$ necessitates $S \sim E(k)^2$ or $E \sim k$

Chiral Fermions in Graphene

 $\hat{H} = v_F \left(\hat{p}_x - i\hat{p}_y \right)$

Dirac-like equation:

McClure 56; Semenoff 84

 $\hat{p}_x + i\hat{p}_y \underbrace{\frac{1}{1}}_{F} = V_F \vec{\sigma} \times \vec{p}$

B

half-integer quantum Hall effect

relativistic analogue of the integer QHE

<u>Manchester, Nature 438, 197 ('05)</u>

also, Philip Kim's group ibid 201 ('05)

ACCESS TO QED-LIKE PHYSICS IN CONDENSED MATTER EXPERIMENT Klein "Paradox"

The End of Periodic Table

Zitterbewegung

relativistic fall-down on the centre

 $Z > \hbar c / e^2 \approx 137$

responsible for the finite conductivity of $\approx e^2/h$ (?)

major observations (... at these very early days) conductivity 'without' charge carriers chiral QHE in its bilayer random vector & scalar fields microscopic corrugations suppression of weak localization long-range spin transport at room T quantum chaos in graphene dots

Minimum Quantum Conductivity

no temperature dependence in the peak from 3 to 300K

NO metal-insulator transition

Minimum Quantum Conductivity

most theories predict π -times larger value Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 Peres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006

quantized resistivity NOT resistance (h/e² per spin and valley)

Minimum Quantum Conductivity

Mott's argument: $l \ge \lambda_F$

$\sigma = ne\mu = \frac{e^2}{h}k_F l \ge \frac{e^2}{h}$

NO LOCALIZATION NO METAL-INSULATOR TRANSITION Geim & MacDonald Phys. Today 07

CHIRAL Quantum Hall Effect (massive Dirac fermions)

massive Dirac fermions

 $E_N = \pm \hbar \omega_c \sqrt{N(N-1)}$ McCann & Falko 2006

Ĥ

QHE in bilayer graphene

n (10¹² cm⁻²)

Nature Phys 2, 177 (2006)

room-temperature QHE

Nonlocal Edge-State Transport

in magnetic field, current starts flowing in classically inaccessible regions

Room-T Nonlocal Transport

macroscopic-scale quantum effect at 300K in fields < 1 Tesla valley- or spin- polarized boundary states ?

Graphene Membranes

Free-Standing Graphene

0.5 µm

(black dots are Cu particles)

TEM image: graphene crystals supported by one side DO NOT BEND!

atomic sheets are extremely stiff

Graphene Is Not Flat microscopic ripples visualized in TEM

diffraction contrast: visible ripples > 10 nm

sample edge

atomic resolution TEM ripples visible in a bilayer; down to 5 nm in size

Meyer, AKG, et al, Nature 2007

Puzzling Micro-Mechanics

all scales present but typical size ≈10 nm with height ≈1 nm induced elastic strain ≈1% Intrinsic Property (?)

CONCLUSIONS new class of materials: individual atomic planes graphene: high-quality system GRAPHENE "relativistic" condensed matter physics **APPLICATIONS:** carbon nanotubes serve as excellent guide

THANK YOU VERY MUCH FOR LISTENING

for review, see Nature Materials 6, 183 (2007)

POTENTIAL APPLICATIONS ("but can we eat them?")

imagine graphene in large wafers

Graphene Wafers?

epitaxial growth on top of bulk crystals

GRAPHENE-BASED ELECTRONICS ballistic field-effect transistor (large but still low on-off ratio ~100 at room T; Science '04) Ð THz-frequency operation chemical sensors (detection of a single gas molecule!) micromechanical devices (McEuen's group) superconducting FETs (Morpurgo's group) room-T graphene spintronics gate control

GRAPHENE DREAMS

entire circuitry carved in graphene

6

0

σ (μS)

< 40 nm

300 K

0.2

gate (V)

0.4

combines several proposed "beyond-Si" technologies: single electronics plus carbon nanotubes plus molecular electronics (but top-down approach)

NOT ONLY ABOUT ELECTRONICS

carbon nanotubes serve as a good guide

composite materials

graphene-based composite Ruoff 2006

field-emitters

hydrogen storage

very thin graphite flakes (already used; PFE Ltd) electrical batteries

"Applied" Conclusions

SPOILING CHOICE OF DIRECTIONS

(no choice: all must be investigated)

TOO EARLY DAYS TO JUDGE (if you are not a nanotube believer)

HOPEFULLY, NOT ANOTHER MUCH-ADO-ABOUT NANOTHING

mechanical cleavage in retrospect

Ohashi (1997, 2000) from 1000 down to 50 layers

single layer demonstrated

(Novoselov et al, Science 2004)

Philip Kim's & Paul McEuen's groups (PRL 2005 & Nanoletters 2005) down to 30 layers Nanopencil

AFM cantilever

for >10 layers, electronic structure of bulk graphite (Partoens 2006, Guinea 2006)