YKIS2007 (Kyoto) Nov.16, 2007

Spin Hall and quantum spin Hall effects

Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Introduction – Spin Hall effect spin Hall effect in Pt Quantum spin Hall phase 2D 3D phase transition from the ordinary insulator phase

Collaborators: N. Nagaosa, S.-C. Zhang, S. Iso, Y. Avishai, M. Onoda, G. Y. Guo, T. W. Chen

Cf. Extrinsic spin Hall effect \leftarrow impurity scattering Intrinsic spin Hall SM, Nagaosa, Zhang, Science (2003)) Luttinger model \vec{E} $H = \frac{\hbar^2}{2m} \left[\left(\gamma_1 + \frac{5}{2} \gamma_2 \right) k^2 - 2 \gamma_2 \left(\vec{k} \times \vec{S} \right) \right]$ GaAs (\vec{s} : spin-3/2 matrix) • 2D n-type semiconductors in heterostructure (Sinova et al., PRL (2004)) \vec{E} Rashba model $H = \frac{k^2}{2m} + \lambda \left(\vec{\sigma} \times \vec{k} \right)$ х Berry phase in k-space ← band crossing $j_{j}^{i} = \sigma_{s} \varepsilon_{ijk} E_{k}$ { i: spin direction j: current direction k: electric field E σ_{c} : even under time reversal E_{F} $j_i^i \approx S_{\mathcal{V}_i}^i \bullet$ Nonzero in nonmagnetic materials.

K

2D quantum spin Hall phase

Quantum spin Hall phases

Bernevig and Zhang, PRL (2005) Kane and Mele, PRL (2005),

- bulk = gapped (insulator)
- gapless edge states -- carry spin current, topologically protected

Quantum spin Hall state \approx Quantum Hall state \times 2

(ii) Simple insulator v

Even number of Kramers pairs of edge states

Gapless edge states exist irrespective of boundary conditions topologically protected

Bulk topological order \rightarrow manifest as edge states

In contrast : Graphene without spin-orbit \rightarrow Edge states only on zigzag edges

Z₂ topological number is a bulk property

No inversion symmetry

 \rightarrow Phases of the wavefunctions should be calculated for the whole BZ

-- product of parity eigenvalues over filled Kramers pairs over Γ_i easy to calculate !

Candidate systems for quantum spin Hall phase?

- Nonmagnetic insulator
- Z₂ topological number = odd

Spin Hall effect and Streda formula

Candidate materials for QSH phase ?

• Bi – semimetal { hole pocket at T point 3 electron pockets at L points

Thin film – vertical motion quantized \rightarrow Gap opens			
<i>d</i> _c insulator	≈ 30nm semimetal	$\longrightarrow d$	V. N. Lutskii (1965) V. B. Sandomirskii(1967) C. A. Hoffman et al. (1993)

Bi as a candidate material for 2D QSH phase

SM, PRL 97, 236805 (2006)

• Enhanced diamagnetic susceptibility in Bi and Bi_{1-x}Sb_x

Г

(calc.)

ĸ

(exp.

surface

2D bismuth as a candidate for QSH phase

Phys. Rev. Lett.97, 236805(2006)

SM

Other candidate systems : CdTe/HgTe/CdTe quantum well

M B. A. Bernevig, T. L. Hughes, S.-C. Zhang *Science* **314**, 1757(2007);

Phase transition at $d = d_c$

Markus König, *et al. Science* **318**, 766 (2007);

Schematic of the spin-polarized edge channels in a quantum spin Hall insulator.

3D quantum spin Hall phase

• Only \mathbf{v}_0 is stable against disorder.

 $v_0 = even$: weak topological insulator

 $(-1)^{\gamma_{0}} = \prod_{\vec{k}=\vec{G}/2} \delta_{\vec{k}}$ No inversion symmetry $\delta_{i} = \frac{\sqrt{\det[w(\Gamma_{i})]}}{\Pr[w(\Gamma_{i})]}$ With inversion symmetry $\delta_{i} = \prod_{m=1}^{N} \xi_{2m}(\Gamma_{i})$

 $v_0 = odd$: strong topological insulator Topological surface states

Materials for strong topological insulators (QSH phase) ?

```
Topology of the Fermi surfaces.
```



```
Fu,Kane, PRB(2007)
```

Bi_{1-x}Sb_x (0.07<x<0.22) α -Sn, HgTe under uniaxial pressure . Pb_{1-x}Sn_xTe under uniaxial (111) strain

- Bi₂Te₃
- Kondo insulators
- skutterudites

(Thermoelectric materials ?)

Fu,Kane, PRB76, 045302 (2007)

Bi_{1-x}Sb_x

H. Höchst, S. A. Gorovikov

Journal of Electron Spectroscopy and Related Phenomena 144–147 (2005) 351–355

Phase transitions

See Fukui, Hatsugai, (2006)

(111) surface

Koroteev et al., PRL (2004).

Rashba spin-split bands at Γ \longrightarrow Meet again at M Do not meet at M

10-bilayer (111)-bismuth

Hirahara et al., PRL (2006)

Hirahara et al., preprint (2007)

Spin-resolved ARPES

Rashba spin splitting

(Example) binary skutterudite (Thanks to K.Takegahara (Hirosaki))

$$\vec{k} = \vec{\Gamma}_i = \frac{1}{2} \left(n_1 \vec{b}_1 + n_2 \vec{b}_2 + n_3 \vec{b}_3 \right) \quad (n_i = 0, 1) \longrightarrow \Gamma, H, N \times 6$$

 Z_2 topological number v

$$(-1)' = \prod_{\Gamma,H,6N} \prod_{m=1}^{N} \xi_{2m}(\Gamma_i) = +1 : \text{Ordinary insulator}$$

Parity (= ± 1)

Phase transition

between the quantum spin Hall and insulator phases

• How does the gap close?

 Z₂ topological number
 physics of gap closing

 global property of the BZ
 local in k-space

 Fu, Kane, Mele
 Phase transition

 Moore, Balents
 Phase transition

 Zhang, Bernevig
 Closing of bulk gap

Phase transition between QSH and insulator phases

Phase transition between QSH and insulator phases

No inversion-symmetric

- 2D : 3 variables $\vec{k} = (k_x, k_y), m$ Can close the gap by one-parameter tuning
- 3D : 4 variables $\vec{k} = (k_x, k_y, k_z), m$ One extra parameter \rightarrow Gap closing = a curve in the hyperspace

 (k_x,k_y,k_z,m)

3D systems without inversion-symmetry

(SM, New J. Phys. (2007))

Phase transition at $m = m_0$: impossible

Instead, gapless phase appears between QSH and insulator phases.

Universality classes of Anderson Localization

Time-reversal symmetric system with the spin-orbit interaction (symplectic universality class)

Scaling Analysis for QSH phase

Onoda, Avishai, Nagaosa, cond-mat/0605510

Why is the quantum spin Hall effect interesting?

Various fields are related with quantum spin Hall effect

- topological order in nonmagnetic insulators
- perfectly conducting channel
- <u>No magnetic field required</u> (cf. quantum Hall effect – requires strong magnetic field)
- Only 1 gapless fermion: Unique for a surface of 3D QSH system

cf. In 2D systems, number of fermions is even (fermion doubling)

Summary

Spin Hall effect in metals and semiconductors

- p-type >> n-type
- Enhanced at band crossing Pt : large spin Hall effect

Quantum spin Hall effect:

- 2D & 3D
- Edge states
 - --- topologically protected
- Bismuth and surface states \rightarrow spin current
- Phase transition between the quantum spin Hall phase and ordinary insulator phase.

Topological gapless phase in 3D

Ε