Kondo effect in multi-level and multi-valley quantum dots

Mikio Eto Faculty of Science and Technology, Keio University, Japan

Outline

- 1. Introduction: <u>next three slides for quantum dots</u>
- Kondo effect in quantum dots with S=1/2 Review of Kondo physics
- 3. Kondo effect in multi-level quantum dots Experimental results
- 4. Theory of SU(4) Kondo effect in quantum dots
 S=1/2 and orbital degeneracy
 Evidence of the marginal fixed point
- 5. Kondo effect in multi-valley quantum dots
 Silicon, carbon nanotube, graphene, etc.
 New Kondo due to small exchange interaction?

(1) Coulomb oscillation and Coulomb blockade

- Quantum dots: zero-dimensional systems of nano-meter scale
- Transport through "discrete levels" in quantum dots
- The levels are controlled by gate voltage.
 - → peak structure of current

(2) Electro-chemical potential

e.g. Constant interaction model

$$E_{N} = \sum_{i=1}^{N} \varepsilon_{i} + \binom{N}{2} \frac{1}{J} U = \sum_{i=1}^{N} \varepsilon_{i} + \frac{N(N-1)}{2} U,$$

$$\mu_{N} = E_{N} - E_{N-1} = \varepsilon_{N} + (N-1)U$$

- "Coulomb blockade" between current peaks.
- The number of electrons, *N*, is changed one by one.

(3) Condition for Coulomb oscillation and blockade

Quantum fluctuation: "level broadening" Γ
 (due to finite lifetime by tunnel coupling to the leads)

$$\frac{1}{\tau} = \sum_{\alpha=L,R;k} \frac{2\pi}{\hbar} |\langle \alpha, k | H_T | d_n \rangle|^2 \delta(\varepsilon_k - \varepsilon_n)$$

$$= \frac{2\pi}{\hbar} v \left(V_L |^2 + |V_R|^2 \right)$$

$$\Gamma = \frac{1}{2} \frac{\hbar}{\tau} = \pi v \left(V_L |^2 + |V_R|^2 \right)$$

$$\downarrow 2\Gamma$$

$$\downarrow 2\Gamma$$

$$\downarrow V_L$$

$$\downarrow V_R$$

2. Kondo effect in quantum dots with S=1/2

In Coulomb blockade region,

- The number of electrons, *N*, is fixed.
- Higher-order tunnel processes, "cotunneling current," are dominant.
- Kondo effect enhances the cotunneling current.
 odd N: S=1/2 (Kondo), even N: S=0 (no Kondo)

Higher-order tunneling processes "Cotunneling"

• 2nd order tunnel process through virtual state

Cotunneling: more than one electron participates.

Impurity Anderson model (single level in quantum dot)

$$H = H_{\text{leads}} + H_{\text{dot}} + H_{\text{T}},$$

$$H_{\text{dot}} = \sum_{\sigma} \varepsilon_0 d_{\sigma}^{\dagger} d_{\sigma} + U d_{\uparrow}^{\dagger} d_{\uparrow} d_{\downarrow}^{\dagger} d_{\downarrow},$$

$$H_{\text{leads}} = \sum_{\alpha=L,R} \sum_{k\sigma} \varepsilon_k c_{\alpha,k\sigma}^{\dagger} c_{\alpha,k\sigma},$$

$$H_{\text{T}} = \sum_{\alpha=L,R} \sum_{k\sigma} (V_{\alpha} c_{\alpha,k\sigma}^{\dagger} d_{\sigma} + \text{h.c.}).$$

• Coulomb blockade region

$$E^+, E^- >> k_{\rm \scriptscriptstyle B} T, \Gamma$$

• Addition and extraction energies

$$\begin{cases} E^+ = \mu_2 - \mu = \varepsilon_0 + U - \mu \\ E^- = \mu - \mu_1 = \mu - \varepsilon_0 \end{cases}$$

$$V_{\mathrm{R}}^{*}\left[\frac{-1}{\varepsilon - (\varepsilon_{0} + U)} + \frac{1}{\varepsilon - \varepsilon_{0}}\right]V_{\mathrm{L}} = V_{\mathrm{R}}^{*}\left(\frac{1}{E^{+}} + \frac{1}{E^{-}}\right)V_{\mathrm{L}} \equiv \frac{V_{\mathrm{R}}^{*}V_{\mathrm{L}}}{E_{\mathrm{c}}}$$
$$\mathsf{at}\ \varepsilon = \mu.$$

Without freedom of charge, with freedom of spin

Effective Hamiltonian for quantum dot with S=1/2

• Second order in $H_{\rm T}$ (Schrieffer-Wolff transformation)

$$\begin{split} H &= \sum_{k\sigma} \varepsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + J \sum_{kk'} \left[\hat{S}_+ c_{k'\downarrow}^{\dagger} c_{k\uparrow} + \hat{S}_- c_{k'\uparrow}^{\dagger} c_{k\downarrow} + \hat{S}_z (c_{k'\uparrow}^{\dagger} c_{k\uparrow} - c_{k'\downarrow}^{\dagger} c_{k\downarrow}) \right] \\ &= \sum_{k\sigma} \varepsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + 2J \sum_{kk'} \mathbf{S} \cdot (\mathbf{s})_{k',k} \\ \text{with } J &= V^2 / E_c \ (1/E_c = 1/E^+ + 1/E^-). \end{split}$$

"Kondo Hamiltonian": Anti-ferromagnetic coupling between dot spin, S, and spins in Fermi sea, $(s)_{k',k}$.

Ground state with antiferromagnetic coupling

• Two interacting spins:

$$\left|\operatorname{Grd}\right\rangle = \frac{1}{\sqrt{2}} \left(\uparrow\right\rangle_{1} \left|\downarrow\right\rangle_{2} - \left|\downarrow\right\rangle_{1} \left|\uparrow\right\rangle_{2}\right\rangle$$

Spin-singlet state

• One spin and Fermi sea:

$$\left|\operatorname{Grd}\right\rangle = \frac{1}{\sqrt{2}} \left(\uparrow \right\rangle_{\operatorname{dot}} \left| \downarrow \right\rangle - \left| \downarrow \right\rangle_{\operatorname{dot}} \right| \Uparrow \right\rangle$$

Kondo singlet state (Many-body state)

Conduction electrons coherently couple with localized spin. The spin is completely screened.

• Kondo temperature $T_{\rm K}$: binding energy of the Kondo singlet state

- $T >> T_{\rm K}$: Spin S = 1/2 is not screened out.
- $T << T_{\rm K}$: Kondo singlet state is formed; Spin is screened. Resonant tunneling through the singlet state.

• Conductance through quantum dot

In quantum dots, Kondo resonance increases the conductance: "Conductance minimum"

In metals with magnetic impurities, scattering is enhanced resonantly: "Resistivity minimum"

Observation of Kondo effect

W. van der Wiel et al., Science 289, 2105 (2000).

One of the arms is pinched off.

• Finite bias *V* :

Zero-bias peak of differential conductance

"Direct observation" of resonant peak although non-equilibrium transport has not been understood completely (many-body effect + decoherence). Theory of Kondo effect

(I) Weak coupling regime $(T >> T_{\rm K})$: Scattering problem by dot spin (S=1/2) $H = H_0 + V$ $H = H_0 + V$ $H = 2J \sum_{kk'} \mathbf{S} \cdot (\mathbf{s})_{k',k}.$

Perturbation with respect to V

$$\hat{T} = V + V \frac{1}{\varepsilon - H_0 + \mathrm{i}\delta} V + V \frac{1}{\varepsilon - H_0 + \mathrm{i}\delta} V \frac{1}{\varepsilon - H_0 + \mathrm{i}\delta} V + \cdots.$$

Born approximation in presence of Fermi sea.

T-matrix (ε: energy of incident electron)

$$\hat{T} = H_{\rm T} + H_{\rm T} \frac{1}{\varepsilon - H_0 + \mathrm{i}\delta} H_{\rm T} + H_{\rm T} \frac{1}{\varepsilon - H_0 + \mathrm{i}\delta} H_{\rm T} \frac{1}{\varepsilon - H_0 + \mathrm{i}\delta} H_{\rm T} + \cdots.$$

Transition probability

$$\frac{2\pi}{\hbar} \left| \langle \text{init} | \hat{T} | \text{fin} \rangle \right|^2 \delta(\varepsilon_{\text{fin}} - \varepsilon_{\text{init}}).$$

Current from lead $L \mbox{ to } R$

$$\begin{split} \Gamma_{L \to R} &= 2 \sum_{k} \sum_{k'} \frac{2\pi}{\hbar} \left| \langle Rk' | \hat{T} | Lk \rangle \right|^2 \delta(\varepsilon_{Rk'} - \varepsilon_{Lk}) \\ &\times f(\varepsilon_{Lk} - \mu_L) \left[1 - f(\varepsilon_{Rk'} - \mu_R) \right]. \\ I &= e(\Gamma_{L \to R} - \Gamma_{R \to L}) \quad \text{with} \quad eV = \mu_L - \mu_R \end{split}$$

Second Born processes

• Logarithmic divergence by the virtual process with spin flip (J. Kondo, 1964)

$$\left\langle \uparrow; k' \uparrow \left| \hat{T} \right| \uparrow; k \uparrow \right\rangle = \begin{cases} -\nu J^2 \ln \left| \varepsilon \right| / D & \text{for } \left| \varepsilon \right| >> k_{\text{B}} T \\ -\nu J^2 \ln k_{\text{B}} T / D & \text{for } \left| \varepsilon \right| << k_{\text{B}} T \end{cases}$$

(D: bandwidth of conduction electrons in Fermi sea)

(i) Precursor to the formation of Kondo singlet.(ii) Contribution from high energy; "scale invariance"

• Leading order logarithmic terms (Abrikosov)

$$\langle \uparrow; k' \uparrow |\hat{T}| \uparrow; k \uparrow \rangle = \frac{J/2}{1 + 2vJ \ln k_{\rm B}T/D} \text{ for } |\varepsilon| << k_{\rm B}T$$

Diverges at Kondo temperature : $T_{\rm K} = D \exp(-1/2vJ)$

$$G = \frac{2e^2}{h} \frac{4\Gamma_L \Gamma_R}{\left(\Gamma_L + \Gamma_R\right)^2} \frac{3\pi^2}{16} \frac{1}{\left[\ln(T/T_K)\right]^2}$$

(II) Strong coupling regime $(T \le T_K)$: Fermi liquid theory with a resonance

$$G = \frac{2e^2}{h} \frac{4\Gamma_L \Gamma_R}{\left(\Gamma_L + \Gamma_R\right)^2} \left[1 - \pi^2 \left(T / T_K\right)^2 \right]$$

<u>Conjecture from (I) and (II)</u>; with a universal function F

$$G = \frac{2e^2}{h} \frac{4\Gamma_L \Gamma_R}{(\Gamma_L + \Gamma_R)^2} F(T/T_K)$$

- Only one relevant energy scale, $T_{\rm K}$
- Universal function of $max(T, B)/T_{K}$
- Kondo temperature $T_{\rm K}$ depends on microscopic parameters; $J(\varepsilon_0, U, V_{\rm L,R}, \nu), D$.

(III) Scaling theory

- We are interested in transport of energy scale *T*.
- High energy scale is truncated by the renormalization of *J*.

Poor man's scaling (Anderson)

- Based on 2^{nd} order perturbation in J
- Bandwidth *D* is changed.
- Exchange coupling J is renormalized not to change the low energy physics.
- *J* increases with decreasing *D*. (The perturbation becomes worse).
- Scaling equation: J diverges at $D=T_{\rm K}$

Numerical renormalization group (NRG, Wilson)

- "Exact" renormalization procedure (numerical)
- Most reliable method to calculate the Kondo effect

3. Kondo effect in multi-level quantum dots: experimental results

(I) SU(4) Kondo effect with S=1/2 at orbital degeneracy Sasaki *et al.*, PRL (2004) [Tarucha group]
(II) Kondo effect at singlet-triplet degeneracy with an even number of electrons Sasaki *et al.*, Nature (2000) [Tarucha and Kouwenhoven groups]

Vertical quantum dots: Tarucha et al. (1996)

- Quantum dots of disk shape
- N=0, 1, 2, 3, ...

2D harmonic potential

- Shell structure of one-electron levels
- Parallel spins at degenerate levels (*N*=4) due to exchange interaction (Hund's rule).
- Artificial atoms "Periodic table"

Kouwenhoven and Marcus, Physics World (June, 1998).

Tunable energy levels by magnetic field

В

B٥

В

B₀

S=0 (singlet) transition.

3.1. Kondo effect with an even number of electrons

Sasaki et al., Nature 405, 764 (2000).

• Energy difference between spin-singlet and triplet is tuned by magnetic field.

• Zeeman effect is negligible (g*=0.4, B=0.2T). Zeeman energy=40mK << $T_{\rm K}$ =350 mK.

Enhanced Kondo effect at singlet-triplet degeneracy

High conductanceLow conductance

3.2. Kondo effect with S=1/2 and orbital degeneracy

Sasaki et al., PRL 93, 17205 (2004).

- <u>Energy level separation is tuned</u> by magnetic field.
- A large Kondo effect around $\Delta = 0$

Orbital symmetry (angular momentum) is conserved in tunneling processes; Two channels in leads

Four-fold degeneracy enhances the Kondo effect in both cases.

• Singlet-triplet degeneracy

$$|S = 0, S_z = 0\rangle,$$

$$|S = 1, S_z = 1\rangle, |1, 0\rangle, |1, -1\rangle$$

Theory: M.Eto and Yu.V.Nazarov, PRL (2000); M. Pustilnik and L. I. Glazman, PRL (2000).

• S=1/2 and orbital degeneracy: SU(4) symmetry $|\uparrow, \text{orbital 1}\rangle, |\downarrow, \text{orbital 1}\rangle, |\uparrow, \text{orbital 2}\rangle, |\downarrow, \text{orbital 2}\rangle$

<u>Recent experiment using double quantum dots</u> A. Huebel, J. Weis and K.v.Klitzing (Stuttgart)

One electron in double QDs (large interdot Coulomb interaction)

• SU(4) Kondo effect:

$$|\uparrow, \text{dot }1\rangle, |\downarrow, \text{dot }1\rangle, |\uparrow, \text{dot }2\rangle, |\downarrow, \text{dot }2\rangle$$

4. Theory of SU(4) Kondo effect in quantum dots

4.1. SU(4) Kondo effect

- One electron (S=1/2), two degenerate orbitals
- Previous work for magnetic impurity with *f* electrons (total angular momentum *j*)
 Coqblin-Schrieffer model of SU(N_d) symmetry:
 The total degeneracy factor N_d=2*j*+1 increases T_K.

$$k_{\rm B}T_{\rm K} = D_0 e^{-1/N_d N J}$$

• In quantum dots, Δ is tunable; lower symmetry?

4.2. Model

- A quantum dot with an electron (S=1/2) and two orbitals (*i*=1,2).
- Energy-level separation

$$\Delta = \varepsilon_2 - \varepsilon_1$$

(Two channels in the leads.)

Exchange couplings

There are four exchange couplings.

Symmetric case of $V_1 = V_2$: $J_1 = J_2 = \widetilde{J} = T \equiv J$. When $\Delta = 0$, SU(4) symmetry

(*) Single orbital, spin 1/2: SU(2) symmetry

4.3. Symmetric tunneling case ($V_1 = V_2$)

Poor man's scaling method (Anderson)

- Based on perturbation with respect to J
- Bandwidth *D* (energy scale) is changed (*).
- Exchange coupling J is renormalized not to change the low energy physics.
- With decreasing *D*, *J* increases. (The perturbation becomes worse.)
- Scaling equation: J diverges at $D=T_{\rm K}$

Scaling equations for D-D Kondo effect

• When $D >> |\Delta|$, *J* develops rapidly with decreasing *D*, due to the four-fold degeneracy [SU(4) Kondo effect].

$$dJ/d\ln D = -4vJ^2$$

When D << |Δ|, the evolution of J is slower since the higher orbital is irrelevant [SU(2) Kondo].

At
$$D \sim |\Delta|$$
, the solutions of these equations are connected [crossover from SU(4) to SU(2) Kondo effect].

 $dJ/d\ln D = -2\nu J^2$

<u>Kondo temperature as a function of Δ </u>: $T_{\rm K}(\Delta)$

• When $|\Delta| \leq T_{K} T_{K}(\Delta)$ is maximal [SU(4) Kondo]:

$$T_K(0) = D_0 \exp\left[-\frac{1}{4vJ}\right]$$

• When $|\Delta| >> D_0$ [SU(2) Kondo],

$$T_K(\infty) = D_0 \exp\left[-\frac{1}{2\nu J}\right]$$

• $T_{K}(0) \ll |\Delta| \ll D_{0} [\text{crossover from SU(4) to SU(2)}],$ A pow $T_{K}(\Delta) = T_{K}(0) \times [T_{K}(0) / |\Delta|], \gamma = 1$

- $T_{\rm K}$ is maximal around $\Delta = 0$ [SU(4) Kondo].
- With increasing $|\Delta|$, $T_{\rm K}(\Delta)$ decreases following a power law [crossover from SU(4) to SU(2)].

cf. K. Yamada, K. Yosida and K. Hanzawa, Prog. Theor. Phys. **71**, 450 (1984).

4.4. General case of $V_1 \neq V_2$

When $D \gg |\Delta|$,

$$\begin{aligned} dJ_1 / vd \ln D &= -2J_1^2 - \widetilde{J}(\widetilde{J} + \widetilde{T}) \\ dJ_2 / vd \ln D &= -2J_2^2 - \widetilde{J}(\widetilde{J} + \widetilde{T}) \\ d\widetilde{J} / vd \ln D &= -\widetilde{J}(J_1 + J_2 + \widetilde{T}) - \widetilde{T}(J_1 + J_2) / 2 \\ d\widetilde{T} / vd \ln D &= -3\widetilde{J}(J_1 + J_2) / 2 - \widetilde{T}T \\ dT / vd \ln D &= -3\widetilde{J}^2 - \widetilde{T}^2 \end{aligned}$$

When $D \ll |\Delta|$,

$$dJ_1 / vd \ln D = -2J_1^2$$
 (for $\Delta > 0$)

Fixed point of SU(4) Kondo effect is marginal. $T_{\rm K}(\Delta)$ is not a universal function. **Renormalization flow**

Non-universal behavior:

 $T_{K}(\Delta) = T_{K}(0) \times [T_{K}(0) / |\Delta|], \quad \gamma \approx V_{2}^{1} / V_{1}^{2} = \Gamma_{2} / \Gamma_{1}$ M.Eto, J. Phys. Soc. Jpn. 74, 95 (2005).

If stable, the fixed point would determine the exponent.

$$T_{K}(\Delta) = T_{K}(0) \times [T_{K}(0) / |\Delta|], \quad \gamma \approx V_{2}^{1} / V_{1}^{2} = \Gamma_{2} / \Gamma_{1}$$

Numerical studies

A power law holds approximately when $V_1 \sim V_2$.

4.5. NRG studies (with T.Sato and O.Sakai)

- Kondo temperature as a function of energy difference Δ
- Estimated by magnetic excitation spectrum(*)

(*)
$$\chi''(\omega) = \sum_{Gr,n} |\langle n | S_{1,z} + S_{2,z} | Gr \rangle|^2 \delta(\omega - E_n + E_{Gr}),$$

(peak position) \Leftrightarrow (characteristic energy of spin fluctuation)

On both sides of level crossing points

$$T_{K}(\Delta) = T_{K}(0) \left[T_{K}(0) / |\Delta| \right], \quad \gamma_{L} \approx \frac{\Gamma_{2}}{\Gamma_{1}} \times \frac{\Gamma_{1}}{\Gamma_{2}} = 1$$

Evidence of marginal fixed point of SU(4) Kondo.

4.6. Conclusions

- SU(4) Kondo effect in quantum dots is theoretically examined.
- The Kondo temperature is maximal around a level crossing (energy separation Δ=0) and decreases with increasing |Δ|, obeying a power law [crossover from SU(4) to SU(2) Kondo effect].

$$T_{K}(\Delta) = T_{K}(0) \times \left[T_{K}(0) / |\Delta| \right]$$

• Generally, $\gamma_L \gamma_R = 1$ where γ_L and γ_R are the exponents on both sides of a level crossing, reflecting marginal fixed point of SU(4) Kondo effect.

Another theoretical work of SU(4) Kondo effect

 Double quantum dots connected in series Borda, Zarand, Hofstetter, Halperin, and von Delft, PRL (2003); NRG studies

$$|\uparrow, \det L\rangle, |\downarrow, \det L\rangle,$$

 $|\uparrow, \det R\rangle, |\downarrow, \det R\rangle$

- Fermi liquid theory is applicable.
- No evidence of marginal fixed point of SU(4) Kondo.

5. Kondo effect in multi-valley quantum dots

5.1. Introduction: Si quantum dots

Oxidation of Si wires makes an effective quantum dot; small size, unknown shape

Takahashi *et al*. Electron. Lett. (1995); Horiguchi *et al*. Jpn. J. Appl. Phys (2001); Rokhinson *et al*. PRB (2001).

Properties of Si

 More than one bottom of conduction band (valley): <u>multivalley structure</u>

(1) 6-valley degeneracy in bulk(2) <u>2-valley degeneracy in Si-MOS</u>

$$k = (0,0,\pm k_0)$$
, with $k_0 = 0.85 \times 2\pi / a$
($a = 0.543$ nm) denoted by $\pm k_z$

cf. single valley at Γ point in GaAs

How is *k*-space degeneracy in real-space confinement of quantum dots?

Si

5.2. Electronic states in Si quantum dots

- Two equivalent valleys are assumed.
- Effective mass approximation (dot size L >> a)

$$\psi_{\pm k_z}(\mathbf{r}) = F(\mathbf{r}) e^{\pm i k_0 z} u_{\pm k_z}(\mathbf{r})$$

• Envelope function *F*(*r*):

$$\begin{bmatrix} -\frac{\hbar^2}{2m_t^*} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \frac{1}{j} - \frac{\hbar^2}{2m_l^*} \frac{\partial^2}{\partial z^2} + V(\mathbf{r}) \end{bmatrix} F(\mathbf{r}) = \varepsilon F(\mathbf{r})$$
$$\begin{pmatrix} m_l^* = 0.98 m_0, m_t^* = 0.19 m_0 \end{pmatrix}$$

yields eigenvalues ε_n and eigenfunctions $F_n(\mathbf{r})$ ($n=1,2,3,\ldots$), which are common to both valleys.

(*) linear dispersion for carbon nanotube, graphene.

- Two-hold degeneracy due to the equivalent valleys
- Assuming *L>>a* and smooth confinement (no intervalley scattering)
- Confirmed by empirical tight-binding calculations; (valley splitting) < 1 K when *L* > 10 nm.

Hada and Eto, PRB **68**, 155322 (2003); Hada and Eto, Phys. Stat. Sol. (c) **2**, 3035 (2005).

$$V(z) = V_0 \{ \tanh[(z - \frac{L}{2})/\xi] - \tanh[(z + \frac{L}{2})/\xi] + 1 \}$$

z: (0,0,1) direction; periodic boundary condition with period *a* in the other directions (only two valleys are considered).

• Split of degenerate valleys (energy difference between ground state and first excited state)

(II) Electron-electron interaction

• Coulomb integral

$$I_{\rm C} = \int \int d\mathbf{r}_1 d\mathbf{r}_2 |\psi_k(\mathbf{r}_1)|^2 \frac{e^2}{|\mathbf{r}_1 - \mathbf{r}_2|} |\psi_{k'}(\mathbf{r}_2)|^2 + k_z - k_z$$

= $\int \int d\mathbf{r}_1 d\mathbf{r}_2 |F(\mathbf{r}_1)|^2 \frac{e^2}{|\mathbf{r}_1 - \mathbf{r}_2|} |F(\mathbf{r}_2)|^2$

Intervalley integral is the same as intravalley

• Intervalley exchange integral

<u>Summary of electronic states</u> "multivalley artificial atom"

• One electron in Si quantum dot: four-fold degeneracy

• Two electrons in Si quantum dot: six-fold degeneracy

(three spin-singlets and one spin-triplet)

5.3. Kondo effect in Si quantum dots

- A quantum dot and two leads fabricated on Si-MOS [experiment] Rokhinson *et al.*, PRB **60**, R16319 (1999).
- Valley index (+k_z or -k_z) is conserved in tunneling processes (barrier thickness >> a)
 → Two channels in the leads

5.3.1. SU(4) Kondo effect with one electron

Coulomb blockade with one electron

• SU(4) Kondo effect results in large $T_{\rm K}$.

5.3.2. Kondo effect with two electrons

• Six-fold degeneracy in <u>Coulomb blockade with</u> <u>two electrons</u> when exchange integral $< T_{\rm K}$

Scaling analysis

$$\begin{aligned} dJ_1 / vd \ln D &= -2(J_1^2 + 2\widetilde{J}\widetilde{T}) \\ dJ_2 / vd \ln D &= -2(J_2^2 + 2\widetilde{J}\widetilde{T}) \\ d\widetilde{J} / vd \ln D &= -(J_1 + J_2)\widetilde{J} / 2 - (J_1 + J_2)\widetilde{T} - T\widetilde{J} \\ d\widetilde{T} / vd \ln D &= -(J_1 + J_2)\widetilde{T} / 2 - (J_1 + J_2)\widetilde{J} - T\widetilde{T} \\ dT / vd \ln D &= -2(\widetilde{J}^2 + \widetilde{T}^2) \end{aligned}$$

A new fixed point of "underscreened Kondo" is unstable against asymmetry.

- When $V_k = V_{k'}$, an underscreening Kondo effect with large Kondo temperature.
- When $V_k \neq V_{k'}$, two independent SU(2) Kondo effects; spin 1/2 in a valley is screened by the conduction electrons in the same valley only.

$$T_{\rm K}^{\pm k_z} = D \exp\left(-\frac{1}{2\nu J_{\pm k_z}}\right)$$
$$J_{\pm k_z} = V_{\pm k_z}^2 \left(\frac{1}{E_+} + \frac{1}{E_-}\right)$$

Contrast to singlet-triplet Kondo effect which has a stable fixed point
 cf. Pustilnik and Glazman, PRL (2000).

$$|S = 0, S_z = 0\rangle,$$

$$|S = 1, S_z = 1\rangle, |1, 0\rangle, |1, -1\rangle$$

• Four-fold degeneracy when exchange interaction is larger than level spacing.

5.4. Conclusions

- Theoretical studies of electronic states and Kondo effect in Si quantum dots
- Energy levels are degenerate, reflecting equivalent valleys
- Intervalley exchange interaction is not effective when dot size is much larger than *a*.
- SU(4) Kondo effect for an electron with four-fold degeneracy
- Two-stage Kondo effect for two electrons with sixfold (three spin-singlet and one triplet) degeneracy

Silicon:

• Valley splitting usually exists, but controllable. Tanashina *et al.*, PRL (2006).

Carbon nanotubes:

- SU(4) Kondo effect by valley degeneracy Jarillo-Herrero *et al.*, Nature **434**, 484 (2005).
- Not our case with two electrons
 <u>Exchange interaction works</u> in carbon nanotubes.

 $I_{\rm ex} / I_{\rm C} \sim 1 / (k_0 L)^2 \sim (a / L)^2$ (L: radius of nanotube)

<u>Related theory</u>: two electrons in double quantum dots: Galpin, Logan, Krishnamurthy, PRL (2005).