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• Quantum dots: zero-dimensional systems of nano-meter 
scale

• Transport through “discrete levels” in quantum dots
• The levels are controlled by gate voltage.
           peak structure of current

 (1) Coulomb oscillation and Coulomb blockade



(2) Electro-chemical potential

UU U+Δε

e.g. Constant interaction model

• “Coulomb blockade” between current peaks.
• The number of electrons, N, is changed one by one.



(3) Condition for Coulomb oscillation and blockade

(level spacing), (Charging energy) >> kBT, Γ

• Quantum fluctuation: “level broadening” Γ
　 (due to finite lifetime by tunnel coupling to the leads)



In Coulomb blockade region,
• The number of electrons, N, is fixed.
• Higher-order tunnel processes, “cotunneling current,” 

are dominant.
• Kondo effect enhances the cotunneling current.
    odd N: S=1/2   (Kondo),  even N: S=0 (no Kondo)

2. Kondo effect in quantum dots with S=1/2



• 2nd order tunnel process through virtual state

Cotunneling: more than one electron participates.

Higher-order tunneling processes “Cotunneling”



Impurity Anderson model (single level in quantum dot)



• Coulomb blockade region

• Addition and extraction 
energies



• S=1/2 in the dot: Spin-flip by cotunneling

Without freedom of charge, with freedom of spin



• Second order in HT (Schrieffer-Wolff transformation)

Effective Hamiltonian for quantum dot with S=1/2

“Kondo Hamiltonian”: Anti-ferromagnetic coupling
 between dot spin, S , and spins in Fermi sea, (s)k’,k .



Ground state with antiferromagnetic coupling

• Two interacting spins:

• One spin and Fermi sea:

Conduction electrons coherently couple with localized
spin. The spin is completely screened.

Kondo singlet state
(Many-body state)

Spin-singlet state



• Kondo temperature TK: binding energy of the Kondo 
singlet state

• T>>TK: Spin S=1/2 is not screened out.

• T<<TK: Kondo singlet state is formed; Spin is screened. 
Resonant tunneling through the singlet state.

Transmission probability=1
(unitary limit) in symmetric case

Asymmetric factor



• Conductance through quantum dot

           Strong coupling       Weak coupling
           (Kondo singlet state;    (perturbation;
             Fermi liquid)                logarithmic T dependence)

In quantum dots, Kondo resonance increases the 
conductance: “Conductance minimum”

In metals with magnetic impurities, scattering is 
enhanced resonantly: “Resistivity minimum”



Observation of Kondo effect

W. van der Wiel et al., Science 289, 2105 (2000).

One of the arms is
pinched off.

http://www.sciencemag.org/content/vol289/issue5487/images/large/se3608836002.jpeg
http://www.sciencemag.org/content/vol289/issue5487/images/large/se3608836002.jpeg


• Finite bias V :
    Zero-bias peak of differential conductance

    “Direct observation” of resonant peak although
    non-equilibrium transport has not been understood 

completely (many-body effect + decoherence).



Theory of Kondo effect

(I)  Weak coupling regime (T>>TK):
      Scattering problem by dot spin (S=1/2)

     Perturbation with respect to V

Born approximation in presence of Fermi sea.



(ε: energy of incident electron)



Second Born processes

(D: bandwidth of conduction electrons in Fermi sea)

• Logarithmic divergence by the virtual process with
  spin flip (J. Kondo, 1964)

(i) Precursor to the formation of Kondo singlet.
(ii) Contribution from high energy; “scale invariance”



• Leading order logarithmic terms (Abrikosov)

(II) Strong coupling regime (T<<TK):
      Fermi liquid theory with a resonance



Conjecture from (I) and (II); with a universal function F

• Only one relevant energy scale, TK

• Universal function of max(T, B)/TK

• Kondo temperature TK depends on microscopic 
parameters; J (ε0, U ,VL,R, ν), D.

(III) Scaling theory
• We are interested in transport of energy scale T.
• High energy scale is truncated by the renormalization 

of J.



• Based on 2nd order perturbation in J
• Bandwidth D is changed.
• Exchange coupling J is renormalized 

not to change the low energy physics.
• J increases with decreasing D. (The 

perturbation becomes worse).
• Scaling equation: J diverges at D=TK

Poor man’s scaling (Anderson) 

Numerical renormalization group (NRG, Wilson)

• “Exact” renormalization procedure (numerical)
• Most reliable method to calculate the Kondo effect



3. Kondo effect in multi-level quantum dots:
experimental results

(I)  SU(4) Kondo effect with S=1/2 at orbital
      degeneracy
         Sasaki et al., PRL (2004) [Tarucha group]
(II) Kondo effect at singlet-triplet degeneracy with
      an even number of electrons
         Sasaki et al., Nature (2000) [Tarucha and
         Kouwenhoven groups]



Vertical quantum dots: Tarucha et al. (1996)

• Quantum dots of disk shape
• N=0, 1, 2, 3, …



2D harmonic potential

• Shell structure of one-electron levels
• Parallel spins at degenerate levels (N=4) due to 

exchange interaction (Hund’s rule).
• Artificial atoms
    “Periodic table”

Kouwenhoven and Marcus,
Physics World (June, 1998).



Tunable energy levels by magnetic field

• Odd N: Level spacing
• Even N: S=1 (triplet) to 
     S=0 (singlet) transition.

B

Darwin-Fock
diagram:



3.1. Kondo effect with an even number of electrons

• Energy difference between spin-singlet and triplet 
is tuned by magnetic field.

• Zeeman effect is negligible (g*=0.4, B=0.2T). 
Zeeman energy=40mK << TK=350 mK.

Sasaki et al., Nature 405, 764 (2000).



Enhanced Kondo effect at singlet-triplet degeneracy

•High conductance
•Low conductance



3.2. Kondo effect with S=1/2 and orbital degeneracy

• Energy level separation is tuned by magnetic field.
• A large Kondo effect around Δ=0 

Sasaki et al., PRL 93, 17205 (2004).



Orbital symmetry (angular
momentum) is conserved in
tunneling processes;
Two channels in leads



• S=1/2 and orbital degeneracy: SU(4) symmetry

Four-fold degeneracy enhances the Kondo effect in
both cases.

• Singlet-triplet degeneracy

Theory: M.Eto and Yu.V.Nazarov, PRL (2000);
              M. Pustilnik and L. I. Glazman, PRL 

(2000).



Recent experiment using double quantum dots
         A. Huebel, J. Weis and K.v.Klitzing (Stuttgart)

One electron in double QDs
(large interdot Coulomb interaction)

• SU(4) Kondo effect:



• One electron (S=1/2), two degenerate orbitals
• Previous work for magnetic impurity with f electrons
    (total angular momentum j)
    Coqblin-Schrieffer model of SU(Nd) symmetry: 
    The total degeneracy factor Nd=2j+1 increases TK.

4. Theory of SU(4) Kondo effect in quantum dots

• In quantum dots, Δ is tunable; lower symmetry?

4.1. SU(4) Kondo effect



4.2. Model
• A quantum dot with an electron (S=1/2) and two 

orbitals (i=1,2).
• Energy-level separation

(Two channels in the leads.)



Exchange couplings

(with and without
spin flip)



There are four exchange couplings.

Symmetric case of V1=V2:

(*) Single orbital, spin 1/2: SU(2) symmetry 

Δ



• Based on perturbation with respect to J
• Bandwidth D (energy scale) is changed (*).
• Exchange coupling J is renormalized not to 

change the low energy physics.
• With decreasing D, J increases. (The 

perturbation becomes worse.)
• Scaling equation: J diverges at D=TK

Poor man’s scaling method (Anderson)

4.3. Symmetric tunneling case (V1=V2)



Scaling equations for D-D Kondo effect
• When D >> |Δ|, J develops rapidly with decreasing D, 

due to the four-fold degeneracy [SU(4) Kondo effect].

• When D << |Δ|, the evolution of J is
    slower since the higher orbital  is
    irrelevant [SU(2) Kondo].

• At D ~|Δ|, the solutions of these equations are connected
    [crossover from SU(4) to SU(2) Kondo effect].

Δ

−Δ



Kondo temperature as a function of Δ: TK(Δ)

• When |Δ|<<TK, TK(Δ) is maximal [SU(4) Kondo]:

• When |Δ|>>D0 [SU(2) Kondo],

• TK(0) << |Δ|<< D0 [crossover from SU(4) to SU(2)],

     A power law dependence on Δ



• TK, is maximal around Δ=0 [SU(4) Kondo].
• With increasing |Δ|, TK(Δ) decreases following a 

power law [crossover from SU(4) to SU(2)].

cf. K. Yamada, K. Yosida and K. Hanzawa, Prog. Theor.
     Phys. 71, 450 (1984).



              4.4. General case of 

Fixed point of SU(4) Kondo effect is marginal.
TK(Δ) is not a universal function.



Renormalization flow

SU(4) Kondo
Fixed point

Non-universal behavior:

M.Eto, J. Phys. Soc. Jpn. 74, 95 (2005).

If stable, the fixed point would determine the exponent.



Numerical studies

(a) (broken line): V1=V2
(b)  (V1/V2)2=3/4
(c)                 1/2
(d)                 4/3
(e)                   2

A power law holds approximately when V1 ~ V2.



4.5. NRG studies (with T.Sato and O.Sakai)

• Kondo temperature as a function of energy difference Δ
• Estimated by magnetic excitation spectrum(*)



TK in log-log scale;
power law in a range of Δ



On both sides of level crossing points

Evidence of marginal fixed point of SU(4) Kondo.



4.6. Conclusions

• SU(4) Kondo effect in quantum dots is theoretically 
examined.

• The Kondo temperature is maximal around a level 
crossing (energy separation Δ=0) and decreases with 
increasing |Δ|, obeying a power law [crossover from 
SU(4) to SU(2) Kondo effect].

• Generally, γLγR=1 where γL and γR are the exponents 
on both sides of a level crossing, reflecting marginal 
fixed point of SU(4) Kondo effect.



Another theoretical work of SU(4) Kondo effect

• Double quantum dots connected in series
    Borda, Zarand, Hofstetter, Halperin, and von Delft,
    PRL (2003); NRG studies

• Fermi liquid theory is applicable.
• No evidence of marginal fixed point of SU(4) Kondo.



5. Kondo effect in multi-valley quantum dots

5.1. Introduction: Si quantum dots

(a)

Oxidation of Si wires makes
an effective quantum dot;
small size, unknown shape

Takahashi et al. Electron. Lett. (1995); Horiguchi et al. 
Jpn. J. Appl. Phys (2001); Rokhinson et al. PRB (2001).



Properties of Si
• More than one bottom of conduction 

band (valley): multivalley structure

    (1) 6-valley degeneracy in bulk
    (2) 2-valley degeneracy in Si-MOS

    cf. single valley at Γ point in GaAs

How is k-space degeneracy in real-space 
confinement of quantum dots?



5.2. Electronic states in Si quantum dots
• Two equivalent valleys are assumed.
• Effective mass approximation (dot size L >> a)

• Envelope function F(r):

yields eigenvalues εn and eigenfunctions Fn (r)
 (n=1,2,3,…), which are common to both valleys.

(*) linear dispersion for carbon nanotube, graphene.



(I) Single electron levels

• Two-hold degeneracy due to the equivalent valleys
• Assuming L>>a and smooth confinement (no 

intervalley scattering)
• Confirmed by empirical tight-binding calculations;
    (valley splitting) < 1 K when L > 10 nm.

n=1

n=2

n=3

+kz –kz

Hada and Eto, PRB 68, 155322 (2003);
Hada and Eto, Phys. Stat. Sol. (c) 2, 3035 (2005).



Empirical spds* tight-binding model

z: (0,0,1) direction; periodic boundary condition with period
a in the other directions (only two valleys are considered).



• Split of degenerate valleys (energy difference 
between ground state and first excited state)



(II) Electron-electron interaction
• Coulomb integral

Intervalley integral is the same as intravalley 
one.• Intervalley exchange integral

+kz –kz

Spin coupling is not
effective!



Summary of electronic states
“multivalley artificial atom”

• One electron in Si quantum dot: four-fold degeneracy

+kz –kz

• Two electrons in Si quantum dot: six-fold degeneracy

(three spin-singlets and one spin-triplet)



5.3. Kondo effect in Si quantum dots

• A quantum dot and two leads fabricated on Si-MOS
  [experiment] Rokhinson et al., PRB 60, R16319 (1999).

• Valley index (+kz or –kz) is conserved in tunneling
   processes (barrier thickness >> a) 
            Two channels in the leads



5.3.1. SU(4) Kondo effect with one electron

Coulomb blockade with one electron

•  SU(4) Kondo effect results
   in large TK.



5.3.2. Kondo effect with two electrons
• Six-fold degeneracy in Coulomb blockade with
  two electrons when exchange integral < TK

• When Vk = Vk’ , a new Kondo effect (underscreening)
   involving six states. The fixed point is unstable.



Scaling analysis

A new fixed point
of “underscreened
Kondo” is unstable
against asymmetry.



• When Vk = Vk’ , an underscreening Kondo effect with
   large Kondo temperature.
• When Vk = Vk’ ,  two independent SU(2) Kondo effects;
   spin 1/2 in a valley is screened by the conduction
   electrons in the same valley only.

S=0 S=1/2



•  Contrast to singlet-triplet Kondo effect which has a
   stable fixed point
       cf. Pustilnik and Glazman, PRL (2000).

•  Four-fold degeneracy when exchange interaction is
   larger than level spacing.



5.4. Conclusions

• Theoretical studies of electronic states and Kondo 
effect in Si quantum dots

• Energy levels are degenerate, reflecting equivalent 
valleys

• Intervalley exchange interaction is not effective 
when dot size is much larger than a.

• SU(4) Kondo effect for an electron with four-fold 
degeneracy

• Two-stage Kondo effect for two electrons with six-
fold (three spin-singlet and one triplet) degeneracy



Carbon nanotubes:

• Valley splitting usually exists, but controllable.
     Tanashina et al., PRL (2006).

(L: radius of nanotube)

• SU(4) Kondo effect by valley degeneracy
    Jarillo-Herrero et al., Nature 434, 484 (2005).
• Not our case with two electrons
    Exchange interaction works in carbon nanotubes.

Silicon:

Related theory: two electrons in double quantum dots:
Galpin, Logan, Krishnamurthy, PRL (2005).


