International Seminar 2007 (YKIS2007) Interaction and Nanostructural Effects in Low-Dimensional Systems

Nov.5-30, 2007, Yukawa Institute for Theoretical Physics

Spin Effects in Coherent Transport

Shingo Katsumoto

Institute for Solid State Physics University of Tokyo

E. Abe, N. Kang, Y. Hashimoto, M. Sato, H. Aikawa, K. Kobayashi, Y. Iye

T. Nakanishi, T. Ando, M. Eto

Outline

- Spin-orbit Berry phase in Aharonov-Bohm (AB) type oscillation
- 2. Effect of spin scattering on orbital coherence
- 3. The Fano effect in AB and T-type interferometers with quantum dots
- 4. The Fano-Kondo effect in T-type and AB interferometers
- 5. Introduction
- 6. The Kondo effect and the RKKY interaction in two quantum dot system

Aharonov-Bohm (AB) ring

Richard A. Webb

R. A. Webb et al. PRL 54, 1610 (1985).

$$|\Psi|^{2} = |\psi_{A}|^{2} + |\psi_{B}|^{2} + 2|\psi_{A}||\psi_{B}|\cos\theta$$

$$\psi_{A} \qquad \Phi \qquad \psi_{B}$$

Electron spin and coherent transport

S. A. Werner et.al., Phys. Rev. Lett. 35, 1053 (1975)

Spin-orbit interaction in two-dimensional systems

Rashba type spin-orbit interaction

In reality: Dresselhause contribution

Lattice anisotropic effect

T. Ando, JPSJ54, 1528 ('85)

Double Fermi contour

J. Eisenstein et al. PRL 53, 2759 ('86)

Berry phase in a single mesoscopic ring

Overall phase

 $\theta_{AB} \pm \Delta \theta_k, \quad \theta_{AB} \pm \Delta \theta_B$

Potential landscape

Antidot lattice (ADL) AAS oscillation: *h*/2*e* period

AB-type oscillation: *h*/*e* period

- survives even when the ordinary AB phases are averaged out due to random phasing
- presumably manifests the oscillatory structure in the DOS, but it is not obvious the Berry phase still appears in it
 - random sample-specific effects are suppressed

Commensurability peak:

appears when the carrier cyclotron orbit is commensurate with an ADL

Magnetic Field (mT)

Sample #2

offset by

0.1 kΩ eac

T = 30 mK

is also as a result of 'pinball' transport

Y. lye et al. JPSJ 73, 3370 (2004)

Sample

Two-dimensional Hole gas
(001) $Ga_{0.65}Al_{0.35}As/GaAs$ Hole concentration from $SdHp_1=0.79\times10^{11}cm^{-2}$ $p_h=1.5\times10^{11}cm^{-2}$ Hall concentration $p=2.3\times10^{11}cm^{-2}$ Mobility $\mu=6.8\times10^4cm^2(Vs)^{-1}$

ľ	Sample	Diameter d (nm)	Period a (nm)	Lattice structure
	SL	250	1000	Square
	SS	250	500	Square
	TL	250	1000	Triangular
	TS	250	750	Triangular

Fourier spectrum of the AB-type oscillation

Dip C corresponds to *h/e* through a single antidot cell The main peak splits into peaks A, A' and B', and a shoulder B Dip C* corresponds to *h/2e* with split-peaks A* and A*'

n-type

Quantum Entanglement

$$\begin{aligned} |\psi\rangle &= |A\rangle + |B\rangle \\ \hline |A\rangle & |B\rangle \\ \hline |A\rangle |1\rangle & |1\rangle \\ \hline |B\rangle |2\rangle & |2\rangle \end{aligned}$$

Direct product $|\Psi\rangle = |\psi\rangle \otimes |\varphi\rangle = |A\rangle|1\rangle + |A\rangle|2\rangle + |B\rangle|1\rangle + |B\rangle|2\rangle$

Maximally entangled state

$$|\Phi\rangle = |A\rangle|1\rangle + |B\rangle|2\rangle$$

Quantification of Entanglement?

What is "measurement"? $|\psi\rangle = |\psi_A\rangle + |\psi_B\rangle$

$$|\Psi\rangle = |\psi_A\rangle |A\rangle + |\psi_B\rangle |B\rangle$$

State entangled with macroscopically distinguishable states |A> and |B>

"Collapse" of wavefunction into ψ_A (or ψ_B).

Buks et al. Nature 391, 871 ('98)

Spin state and quantum decoherence

Akera PRB 59, 9802(`99), König & Gefen PRB65, 045316 (`02)

•When the number of electrons is odd:

Spin state and quantum decoherence

Akera PRB **59**, 9802(`99), König & Gefen PRB**65**, 045316 (`02)

Spin-flip process reduces quantum coherence

AB amplitude for a spin-pair

H. Aikawa et al. PRL **92**, 176802 (`04)

Quantum entanglement and decoherence

$$|\langle A|B\rangle|^2 = \frac{|\langle\psi_{\rm A}|\psi_{\rm B}\rangle|^2}{2}$$

Φ

 $\psi_{\rm A}$

 χ_A

$$\begin{split} \psi_{\mathbf{A}} &: |\psi_{\mathbf{A}}\uparrow\rangle |d\downarrow\rangle \\ \psi_{\mathbf{B}} &: \frac{1}{\sqrt{2}} \left(|\psi_{\mathbf{B}}\uparrow\rangle |d\downarrow\rangle - |\psi_{\mathbf{B}}\downarrow\rangle |d\uparrow\rangle\right) \end{split}$$

Qauntum dot: creates entanglement between spin freedom and orbital freedom (A or B)

Spatially localized interaction causes entanglement with the orbital freedom

Decoherence occured when the dot freedom is traced out

 $\psi_{\rm B}$

Suggestion: Degree of entanglement can be mearued by decoherence when the freedoms in the other system are integrated out.

Question: Is this really decoherence?

Schmidt decomposition

Two systems $\left| \mathcal{H}_{A}, \mathcal{H}_{B} \right|$ states of them can be written as $\left| A \right\rangle = \sum_{i}^{d_{A}} c_{i} |\eta_{i}\rangle, \ |B\rangle = \sum_{j}^{d_{B}} c_{j} |\xi_{j}\rangle$

ex) Direct product (no entanglement)

$$|A\rangle \otimes |B\rangle = \sum_{i,j} c_i c_j |\eta_i\rangle |\xi_j\rangle$$

In general
$$|\psi_{AB}\rangle = \sum_{i,j}^{d_A,d_B} c_{ij}|\eta_i,\xi_j|$$

Diferent basis *u*, *v* (Schmidt decomposition)

$$|\psi_{AB}\rangle = \sum_{k=1}^{d} d_k |u_k, v_k\rangle, \quad \sum_{k=1}^{d} d_k^2 = 1 \ (d = \min(d_A, d_B))$$

Density matrix after tracing out of each other's degree of freedom

$$\rho_{\rm A} = \sum d_k^2 |u_k\rangle \langle u_k|, \quad \rho_{\rm B} = \sum d_k^2 |v_k\rangle \langle v_k|$$

Quantification of Entanglement

$$\rho_{\rm A} = \sum d_k^2 |u_k\rangle \langle u_k|, \quad \rho_{\rm B} = \sum d_k^2 |v_k\rangle \langle v_k|$$

"Entanglement entropy" or "von Neumann entropy"

$$E(|\psi_{AB}\rangle) = S(\rho_A) = S(\rho_B) = -\sum_{k=1}^d d_k^2 \log_2(d_k^2)$$

$$S(\rho) = -\mathrm{Tr}\rho\log\rho$$

(ex)
$$|\Psi_s\rangle = \frac{1}{\sqrt{2}} \left(|\phi_{\downarrow}\rangle |\chi_{\uparrow}\rangle - |\phi_{\uparrow}\rangle |\chi_{\downarrow}\rangle \right) \quad |\phi_{\downarrow}\rangle = \frac{1}{\sqrt{N}} \sum_{k>k_F} \Gamma_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\downarrow} |F\rangle$$

$$\rho_{\rm im} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad S(\rho_{\rm im}) = 1 \qquad \text{Maximally entangled}$$

The Kondo Effect

Jun Kondo

Really decoherence?

$$\frac{1}{\sqrt{2}} \left(\left| s \uparrow \right\rangle \right| d \downarrow \rangle - \left| s \downarrow \right\rangle \left| d \uparrow \rangle \right)$$

Spin-flip scattering Shield of local moment Kondo singlet

Recovery of coherence?

VOLUME 168, NUMBER 2

Closed-Form Solution for the Collective Bound State due to the *s*-*d* Exchange Interaction

Akio Yoshimori

Institute for Solid State Physics, University of Tokyo, Tokyo, Japan (Received 6 September 1967)

 $\psi = \{ \sum_{k} \left[\Gamma_{k}^{\alpha} a_{k\downarrow}^{\dagger} \alpha + \Gamma_{k}^{\beta} a_{k\uparrow}^{\dagger} \beta \right] \longrightarrow \left(s \uparrow \left| d \downarrow \right\rangle - \left| s \downarrow \right| d \uparrow \right)$

$$+\sum_{k_{1}k_{2}k_{3}} \left[\Gamma_{k_{1}k_{2}k_{3}}^{\alpha \downarrow} a_{k_{1}\downarrow}^{\dagger} a_{k_{2}\downarrow}^{\dagger} a_{k_{3}\downarrow}^{\alpha \downarrow} \alpha + \Gamma_{k_{1}k_{2}k_{3}}^{\beta \uparrow} a_{k_{1}\uparrow}^{\dagger} a_{k_{2}\uparrow}^{\dagger} a_{k_{3}\uparrow} \beta \right]$$

$$+\Gamma_{k_1k_2k_3}^{\alpha^{\dagger}}a_{k_1\downarrow}^{\dagger}a_{k_2\uparrow}^{\dagger}a_{k_3\uparrow}^{\alpha}+\Gamma_{k_1k_2k_3}^{\beta^{\downarrow}}a_{k_1\uparrow}^{\dagger}a_{k_2\downarrow}^{\dagger}a_{k_3\downarrow}^{\beta}\beta]$$

$$+\cdots \}\psi_v,$$
 (1)

Fermi State

The Kondo Effect in a Quantum Dot System

W. G. van der Wiel et al. Science **289**, 2105 (2000).

"Phase Sensitive" Measurement

Effect of magnetic flux

K. Kobayashi et al. PRL 88, 256806 (`02)

Fano effect in side-coupled dot geometry

QD-AB-ring system Fano effect in the transmission mode. (Mach-Zender-like) **T-coupled quantum dot** Fano effect in the reflection mode. (stub-type or Michelson-type)

Emergence of non-local Coulomb "dips" with Fano distortion

T-coupled Quantum Dot-Wire Hybrid

U = 0.3 - 0.7meV
△ = 0.3 - 0.5meV
Dot diameter ~ 50nm

Spatially compact -> high coherence

Single connection point -> small dot size is available

Coupling strength dependence of anti-resonanc

Coupling strength dependence of antiresonance

Observation of Fano-Kondo anti-resonance

M. Sato et al. PRL.

Zeeman splitting П ٦ B =Zeeman splitting of zero bias dip -1 proportional to B (|g|=0.33) ٦ Splitting (µeV) 007 007 1.5 5 0.2 -0.2 0.0 0 $V_{\rm sd}~({\rm mV})$ *B* (T)

Phase shift locking to \pi/2

The Kondo Effect

"Coherent" component and the Fano-Kondo Effect

"Coherent" component and the Fano-Kondo Effect

"Coherent" component and the Fano-Kondo Effect

Weak entanglement between localized spin and conduction spin?

S. Oh & J. Kim, PRB73-052407(`06)

-1

Yosida's variational ground state

$$\left|\Psi_{s}\right\rangle = \frac{1}{\sqrt{2}}\left(\left|\phi_{\downarrow}\right\rangle\left|\chi_{\uparrow}\right\rangle - \left|\phi_{\uparrow}\right\rangle\left|\chi_{\downarrow}\right\rangle\right) \quad \left|\phi_{\downarrow}\right\rangle = \frac{1}{\sqrt{N}}\sum_{k>k_{F}}\Gamma_{\mathbf{k}}c_{\mathbf{k}\downarrow}^{\dagger}\left|F\right\rangle$$

Entanglement entropy between electron spins in Kondo cloud and localized spin

$$\rho_{\rm im} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \frac{S(\rho_{\rm im}) = 1}{\text{Maximally entangled}}$$

Entanglement entropy between an electron spin in Kondo cloud and localized spin

$$S(\rho) \approx O(1/N)$$

Exchange coupling J(t) in double dot:

 $H_{S}(t) = J(t)S_{L} \cdot S_{R}$

Tunable entanglement

- Theory for artificial atoms and molecules

 >exchange J
- Theory for electrical current through system
 ->measurements

Interaction of a qubit with its environment leads to entanglement of qubit with environment and decoherence.

Two impurity Kondo: A model of entangled qubits and the environment?

$$= H_C - J \Big(\mathbf{S}_A \cdot \mathbf{s}_c(A) + \mathbf{S}_B \cdot \mathbf{s}_c(B) \Big)$$

$$H_{RKKY} = I(R) \mathbf{S}_A \cdot \mathbf{S}_B$$

S. Y. Cho & R. H. McKenzie, PRA (2006)

N. J. Craig et al., Science 304, 565 (2004)

Two impurity Kondo exepriment?

S. Sasaki *et.al*, Phys. Rev. B 73 161303 (2006)

Reduction of the Kondo effect: fronting alignment

Face to Face configuration

In Kondo region high conductivity: b, d low conductivity: a, c, e

Reduction of the Kondo

Resonance peak in I-V characteristics b, d: Small peaks a, c, e: no peak

effect depending on the parity of the other dot

Reduction of the Kondo effect: parallel alignment

Conclusion

- 1. Spin-orbit Berry phase due to spin-orbit interaction
- 2. Decoherence due to spin-orbit entanglement via quantum dot
- 3. Observation of the Fano-Kondo effect in Tshaped and AB interferometers with a quantum dotl.
- 4. Kondo-RKKY competition in two-impurity Kondo model