Quasi-1d Frustrated Antiferromagnets

Leon Balents, UCSB
Masanori Kohno, NIMS, Tsukuba
Oleg Starykh, U. Utah

The David and Lucile Packard Foundation
Outline

- Frustration in quasi-1d systems
- Excitations: magnons versus spinons
 - Neutron scattering from Cs$_2$CuCl$_4$ and spinons in two dimensions
- Low energy properties of quasi-1d antiferromagnets and Cs$_2$CuCl$_4$ in particular
 - Renormalization group technique
Outline

- Frustration in quasi-1d systems
- Excitations: magnons versus spinons
 - Neutron scattering from Cs$_2$CuCl$_4$ and spinons in two dimensions
- Low energy properties of quasi-1d antiferromagnets and Cs$_2$CuCl$_4$ in particular
 - Renormalization group technique
What is frustration?

- Competing interactions
 - Can’t satisfy all interactions simultaneously
 - Optimization is “frustrating”

- “People need trouble – a little frustration to sharpen the spirit on, toughen it. Artists do; I don't mean you need to live in a rat hole or gutter, but you have to learn fortitude, endurance. Only vegetables are happy.” – William Faulkner
Geometrically Frustrated Lattices

- Triangular lattice
- NaTiO$_2$, LiVO$_2$,
- Kagome lattice
- SrCr$_9$Ga$_3$O$_{19}$
- Pyrochlore lattice
- Spinel (AB$_2$O$_4$) $\text{Fe}_3\text{O}_4 = \text{FeFe}_2\text{O}_4$
- Checkerboard lattice
Quasi-1d systems

- Weakly coupled chains

\[H = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j \]

- Single Heisenberg chain well understood
 - Exact solution (Bethe 1932...) gives energies, wavefunctions, some correlations
 - Low energy bosonization theory

- \(J' / J \) gives expansion parameter
Frustration in quasi-1D systems

- Weakly coupled chains
 \[H = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j \]
 \[J' \ll J \]

- Frustration
 - Dominant antiferromagnetic correlations incompatible between chains
 - Broadened domain of \(J'/J \) expansion

Zero net exchange field from one chain upon another
Outline

- Frustration in quasi-1d systems
- **Excitations: magnons versus spinons**
 - Neutron scattering from Cs$_2$CuCl$_4$ and spinons in two dimensions
- Low energy properties of quasi-1d antiferromagnets and Cs$_2$CuCl$_4$ in particular
 - Renormalization group technique
Magnons

- Basic excitation: spin flip
 - Carries "S²"=± 1

- Periodic Bloch states: spin waves
 - Quasi-classical picture: small precession

\[\varepsilon = \hbar \omega(k) \]

Image: B. Keimer
Inelastic neutron scattering

- Neutron can absorb or emit magnon

\[S(k, \omega) \propto \text{Re} \left\langle S^\ast_k \delta(\omega - H) S^+_{-k} \right\rangle \sim Z(k) \delta(\omega - \epsilon(k)) \]

Line shape in Rb$_2$MnF$_4$

La$_2$CuO$_4$
One dimension

- Heisenberg model is a *spin liquid*
 - No magnetic order
 - Power law correlations of spins and dimers
 \[\langle \vec{S}(x) \cdot \vec{S}(x') \rangle \sim \frac{(-1)^{x-x'}}{|x-x'|} + \cdots \]

- Excitations are s=1/2 *spinons*
 - General for 1d chains
 - Cartoon
 - Ising anisotropy
Spinons by neutrons

Bethe ansatz:
- Spinon energy
 \[\varepsilon_s(k) = \frac{\pi J}{2} |\sin k_x| \]
- Spin-1 states
 \[k_x = k_{x1} + k_{x2} \]
 \[\epsilon = \varepsilon_s(k_{x1}) + \varepsilon_s(k_{x2}) \]

Theory versus experiment for KCuF$_3$, with spatial exchange anisotropy of 30 (very 1d)

B. Lake et al, HMI
Spinons in $d>1$?

- Resonating Valence Bond theories (Anderson...)
 - Spin “liquid” of singlets

\[|\psi\rangle = \begin{array}{c}
\text{Diagram with two states}
\end{array} + \begin{array}{c}
\text{Diagram with two states}
\end{array} + \ldots \]

- Broken singlet “releases” 2 spinons

- Many phenomenological theories
 - No solid connection to experiment
Outline

- Frustration in quasi-1d systems
- Excitations: magnons versus spinons
 - Neutron scattering from Cs$_2$CuCl$_4$ and spinons in two dimensions
- Low energy properties of quasi-1d antiferromagnets and Cs$_2$CuCl$_4$ in particular
 - Renormalization group technique
Cs$_2$CuCl$_4$: a 2d spin liquid?

Couplings:

- $J' \approx 0.3$ J
- $D \approx 0.05$ J
- $J \approx 0.37$ meV

Hamiltonian:

$$\mathcal{H} = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j - \sum_{ij} D_{ij} \cdot \vec{S}_i \times \vec{S}_j - \hbar \cdot \sum_i \vec{S}_i$$
Inelastic Neutron Results

Very broad spectra similar to 1d (in some directions of k space). Roughly fits to power law.

Note asymmetry.

Fit of “peak” dispersion to spin wave theory requires adjustment of J, J' by $\approx 40\%$ - in opposite directions!
2d theories

- **Arguments for 2d:**
 - \(J'/J = 0.3 \) not very small
 - Transverse dispersion

- **Exotic theories:**

- **Spin waves:**

Back to 1d

- Frustration enhances one-dimensionality
 - First order energy correction vanishes due to cancellation of effective field
 - Numerical evidence: $J'/J < 0.7$ is “weak”

Numerical phase diagram contrasted with spin wave theory

Very small inter-chain correlations
Excitations for $J' > 0$

- Coupling J' is *not* frustrated for excited states
- Physics: transfer of spin 1
 - Spinons can hop *in pairs*
 - Expect spinon binding to lower energy
 - Spin bound state="triplon" clearly disperses transverse to chains
Effective Schrödinger equation

- Study two spinon subspace

\[|k_x, k_y; \epsilon \rangle = \sum_y e^{ik_y y} |k_x, \epsilon \rangle_y \otimes \chi_{y \neq y'} |0\rangle_{y'} \]

- Momentum conservation: 1d Schrödinger equation in \(\epsilon \) space

\[\epsilon \psi_k(\epsilon) + \int d\bar{\epsilon} D_{k_x}(\bar{\epsilon}) \mathcal{J}'(k) A^*_k(\epsilon) A_{k,x}(\bar{\epsilon}) \psi_k(\bar{\epsilon}) = E \psi_k(\epsilon) \]

- Crucial matrix elements known exactly

\[A_{k,x}(\epsilon) = \frac{1}{\sqrt{2}} \langle 0 | S_{-k,x,y}^- | k_x, \epsilon \rangle_{y} \]

Bougourzi et al, 1996
Structure Factor

- **Spectral Representation**

\[S(k, \omega) \propto \sum_n \left| \langle n | S^+_k | 0 \rangle \right|^2 \delta(\omega - E_n) \]

- Can obtain closed-form “RPA-like” expression for 2d \(S(k, \omega) \) in 2-spinon approximation

\[
S(k, \omega) = \frac{S_{1d}(k, \omega)}{[1 + J'(k)\chi'_{1d}(k, \omega)]^2 + [\pi J'(k)S_{1d}(k, \omega)]^2}
\]

- **Weight in 1d:**
 - 73% in 2 spinon states
 - 99% in 2+4 spinons

References
Bougourzi et al, J.S. Caux et al
Types of behavior

- Behavior depends upon spinon interaction

$J^*(k_x, k_y) < 0$

$J^*(k_x, k_y) = 0$

$J^*(k_x, k_y) > 0$

| Bound “triplon” | Identical to 1D | Upward shift of spectral weight. Broad resonance in continuum or antibound state (small k) |

Bound “triplon”

Identical to 1D

Upward shift of spectral weight. Broad resonance in continuum or antibound state (small k)
Broad lineshape: “free spinons”

- “Power law” fits well to free spinon result
 - Fit determines normalization
Bound state

- Compare spectra at $J'(k) < 0$ and $J'(k) > 0$:

 - Curves: 2-spinon theory with experimental resolution
 - Curves: 4-spinon RPA with experimental resolution

- Curves: 2-spinon theory with experimental resolution
Transverse dispersion

Bound state and resonance

Solid symbols: experiment
Note peak (blue diamonds) coincides with bottom edge only for \(J'(k)<0 \)
Spectral asymmetry

- Comparison:

Vertical lines: $J'(k)=0$.
Conclusion (spectra)

- Simple theory works well for frustrated quasi-1d antiferromagnets
 - Frustration actually simplifies problem by enhancing one-dimensionality and reducing modifications to the ground state
- "Mystery" of Cs$_2$CuCl$_4$ solved
 - Need to look elsewhere for 2d spin liquids!
Outline

- Frustration in quasi-1d systems
- Excitations: magnons versus spinons
 - Neutron scattering from Cs$_2$CuCl$_4$ and spinons in two dimensions
- Low energy properties of quasi-1d antiferromagnets and Cs$_2$CuCl$_4$ in particular
 - Renormalization group technique
Frustration: Low energy physics

- Recall: no naïve (leading order) preference for inter-chain ordering

- Q: How is the degeneracy resolved in the ground state?
 - Magnetic order? What sort?
 - Dimerization?
 - Spin liquid?
Experimental Behavior

- Cs_2CuCl_4 orders at 0.6K into weakly incommensurate coplanar spiral
- Order evolves in complex way in magnetic field
- Field normal to plane:
 - Only one phase
 - Order slightly enhanced in field
Experimental Behavior

- Cs_2CuCl_4 orders at 0.6K into weakly incommensurate coplanar spiral
- Order evolves in complex way in magnetic field
- Field parallel to plane:
 - Several phases
 - Zero field state weakened by field
Renormalization Group theory

- **Strategy:**
 - Identify instability of weakly coupled chains (science)
 - Try to determine the outcome (art)

- **Instabilities**
 - Renormalization group view: relevant couplings

![Diagram](relevant vs. irrelevant couplings)

- $\text{relevant relevant} \rightarrow \text{decoupled chain fixed point}$
What are the couplings?

- Inter-chain couplings are composed from scaling operators of individual chain theory, e.g. in zero field:
 - Staggered magnetization \vec{N}
 - Staggered dimerization ε

- Can order these by range and relevance

\[H_1' = \sum_y g_1 \mathcal{O}_1(y)\mathcal{O}_1(y + 1) \]
\[H_2' = \sum_y g_2 \mathcal{O}_2(y)\mathcal{O}_2(y + 2) \]

Further chain couplings just as relevant but smaller
Example: Zero field $J-J'$ model

- Allowed operators strongly restricted by reflections

\[\tilde{N}(y) \sim \tilde{N}(y + 1) \]
RG Subtleties (1)

- “Accidentally” zero couplings
 - E.g. staggered magnetization coupling $g_N = 0$

$$g_2(g_N)$$

- Fluctuations generate relevant operator
 - Non-linearities bend RG flow lines

\[
\frac{dg_1}{d\ell} = -\lambda_1 g_1 \\
\frac{dg_2}{d\ell} = \lambda_2 g_2 - g_1^2
\]
RG Subtleties (2)

- Competing Relevant Operators
 - Fluctuations generate several relevant couplings that compete \((g_N, g_\varepsilon)\)

\[g_1(g_N) \quad g_2(g_\varepsilon) \]

- More relevant operators grow faster under RG
- Larger bare values can compensate

\[\frac{dg_i}{d\ell} = \lambda_i g_i \quad \lambda_1 > \lambda_2 \]

- Two factors:
Result in Zero Field

- Pure J-J’ model:
 - Staggered magnetization coupling g_N dominates and induces *collinear magnetic order*
 - Very weak instability occurs only below energy scale $\sim (J')^4/J^3$
Result in Zero Field

- **Dzyaloshinskii-Moriya interaction**

 \[\mathcal{H}_{DM} = D \sum_y (-1)^y \hat{z} \cdot \hat{N}_y \times \hat{N}_{y+1} \]

 - Cannot be neglected since it is *large* compared to fluctuation-generated coupling

 \[\frac{D}{J} \sim 0.05 \gg \left(\frac{J'}{J} \right)^4 \sim (0.3)^4 \sim 0.01 \]

- **Result: non-collinear spiral state**

 Agrees with neutron experiments
Transverse (to plane) Field

- XY spin symmetry preserved
 - DM term becomes *more relevant*
- b-c spin components remain commensurate: XY coupling of “staggered” magnetizations still cancels by frustration (reflection symmetry)
- Spiral (cone) state just persists for all fields.

Experiment:

Order *increases* with h here due to increasing relevance of DM term

Order *decreases* with h here due to vanishing amplitude as h_{sat} is approached
Longitudinal Field

- Field breaks XY symmetry:
 - Competes with DM term and eliminates this instability for $H \gtrsim D$
 - Other weaker instabilities take hold

- Naïve theoretical phase diagram

- Expt.
 - Cycloid ? Commensurate AF state
 - AF state differs from theory (J_2?)

```
Longitudinal Field

Field breaks XY symmetry:

- Competes with DM term and eliminates this instability for $H \gtrsim D$
- Other weaker instabilities take hold

Naïve theoretical phase diagram

Expt.
- Cycloid ? Commensurate AF state
- AF state differs from theory ($J_2$?)
```

\[h/h_{sat} \]

\[\sim 0.1 \]

\[0 \]

\[T \]

\[0.9 \]

\[1 \]

\[h/h_{sat} \]

Weak “collinear” SDW

“cone”

Polarized
Magnetization Plateau

"Umklapp" (dangerously irrelevant operator): commensurate SDW state unstable to plateau formation

- Strongest locking at \(M = M_{\text{sat}}/3 \)
- Gives \(\text{"uud"} \) state which also occurs in spin wave theory (Chubukov)

Magnetization plateau observed in \(\text{Cs}_2\text{CuBr}_4 \)
Summary

- One-dimensional methods are very powerful for quasi-1d frustrated magnets, even when inter-chain coupling is not too small.
- Integrability allows access to high energy spectral properties.
- Systematic RG methods describe low energy physics for:
 - Triangular lattice
 - Checkerboard lattice
 - Spatially anisotropic frustrated square lattice
For the Future

- Quasi-1d conductors
- Spectra in magnetic field
- Other geometries

Shojoshin-in 清浄心院
kagome basket, Shojoshin-in temple, Koyasan