Spin Current vs. Charge Current

in Magnetic Nanostructures

S. Maekawa

(IMR, Tohoku University)

Contents: (i) Spin current, (ii) Spin accumulation, (iii) Spin Hall effect, (iv) Spin current pumping.

(Charge current \iff Spin Current)

charge current : $J_c = J_{\uparrow} + J_{\downarrow}$ spin current : $J_s = J_{\uparrow} - J_{\downarrow}$

Contents:

(i) Spin accumulation,
(ii) Spin current,
(iii) Spin Hall effect,
(iv) Spin current pumping.

What is a ferromagnet ?

Spin diffusion length (λ_N)

10 nm \sim 1 μ m

Tunnel magnetoresistance (TMR)

Parallel alignment

Antiparallel alignment

(S. Maekawa and U. Gafvert: IEEE Mag. 18, 707 (1982))

Spin accumulation :

$$-\frac{1}{2}V \bigcirc -$$
 Ferro Normal Ferro $-\bigcirc \frac{1}{2}V$

Antiparallel alignment :

Antiparallel alignment

$$\xrightarrow{V/2} FM \xrightarrow{I} FM \xrightarrow{O} V/2$$

Parallel alignment

"Spin accumulation"

"Spin current"

Spin accumulation in High- T_{c} superconductors :

(Z.W. Dong *et al.*: *APL* **71**, 1718 (1997))

 $2\Delta_0 \approx \mu_B H$

Magnetization

 $M = \mu_B \left(n_{\uparrow} - n_{\downarrow} \right)$

Spin accumulation >> Zeeman effect

⁽S. Takahashi, H. Imamura, S.M., PRL. 82, 3911 (1999)

Non-Local Spin Accumulation Device,

F. J. Jedema et. al., Nature 416, 713 (2002)

Spin accumulation signal:

```
R_{\rm S} = (V_{\rm P} - V_{\rm AP}) / I
```


 $R_s = 10 \text{ m}\Omega$

Co-Al-Co

Non-local geometry for measurement

Spin accumulation:

 $\delta \mu_{\rm N}(x) = \mu_{\uparrow} - \mu_{\downarrow}$

Charge and Spin currents:

 $\left\{ egin{array}{l} j=j_{\uparrow}+j_{\downarrow}\ j_{
m spin}=j_{\uparrow}-j_{\downarrow} \end{array}
ight.$

Spin-dependent currents:

Bulk spin polarization of F:

$$p_{\rm F} = \frac{\sigma_{\rm F}^{\uparrow} - \sigma_{\rm F}^{\downarrow}}{\sigma_{\rm F}^{\uparrow} + \sigma_{\rm F}^{\downarrow}}$$
$$p_{\rm F} = 50: 70\% *$$

Basic equations for *Electro-chemical potential*:

 $\nabla^{2} \left(\sigma_{\uparrow} \mu_{\uparrow} + \sigma_{\downarrow} \mu_{\downarrow} \right) = 0 \qquad \leftarrow \text{ Charge conservation}$ $\nabla^{2} \left(\mu_{\uparrow} - \mu_{\downarrow} \right) = \frac{1}{\lambda_{s}^{2}} \left(\mu_{\uparrow} - \mu_{\downarrow} \right) \leftarrow \text{ Spin diffusion}$ $\mu_{\uparrow} - \mu_{\downarrow} \propto \exp\left(-x/\lambda_{s}\right)$

 $\lambda_{\rm s}$: spin diffusion length

Jedema *et al.* T = 4.2K

	$\lambda_{ m S}$	ρ		
Cu	1000 nm	1.4 μΩcm		
ΑΙ	650 nm	6 μΩcm		
Ру	5 nm*	8 μΩcm		
Со	50 nm*	14 μΩcm		

(**Py:** Ni₈₀Fe₂₀) *Bass and Pratt

Co-Al-Co tunnel device

$$\begin{cases} R_{1} = 600\Omega, & R_{2} = 1200\Omega, & I = 100\mu A \\ \rho_{N} = 6 \ \mu\Omega cm \\ A_{N} = w_{N}d_{N} = 250nm \times 50nm \end{cases}$$

$$R_{S} = \frac{V_{\mathrm{P}} - V_{\mathrm{AP}}}{I} = P_{\mathrm{T}}^{2} R_{\mathrm{N}} e^{-L/\lambda_{\mathrm{N}}}$$

$$R_{\rm N} = \frac{\rho_{\rm N} \lambda_{\rm N}}{A_{\rm N}} = 3\Omega$$

Fitting parameter: P, $\lambda_{\rm N}$

$$\delta\mu_{\rm N}(x) = \frac{1}{4} \frac{PeR_{\rm N}}{44} I \cdot e^{-x/\lambda_{\rm N}}$$

$$15\mu eV$$

(F. J. Jedema *et al.*, *Nature* **416**, 713 (2002) S. Takahashi and S.M., *PRB* **67**, 052409 (2003))

Spin Hall effect :

• Intrinsic Spin Hall Effect:

Spin-Orbit Coupling in the Band Structure

→ Ballistic transport

• Extrinsic Spin Hall Effect:

Spin-Orbit Scattering of Electrons → Diffusive transport ↑ metallic systems

Experiments:

Valenzuela & Tinkham, *Nature* 442, 176 (2006). Saitoh *et al.*, *APL* 88, 182509 (2006) Kimura *et al.*, *PRL* 98,156601(2007),

Anomalous Hall effect in ferromagnets

Hamiltonian:

$$\mathcal{H} = \sum_{k\sigma} \xi_k a_{k\sigma}^{\dagger} a_{k\sigma} + \sum_{k,k'} \sum_{\sigma,\sigma'} U_{kk'}^{\sigma\sigma'} a_{k'\sigma'}^{\dagger} a_{k\sigma}$$

Impurity potential:

$$\boldsymbol{U}_{\boldsymbol{k}\boldsymbol{k}'}^{\boldsymbol{\sigma}\boldsymbol{\sigma}'} = \boldsymbol{u}_{\mathrm{imp}} \left[\boldsymbol{\delta}_{\boldsymbol{\sigma}\boldsymbol{\sigma}'} + i\boldsymbol{\lambda}_{so} \boldsymbol{\sigma}_{\boldsymbol{\sigma}\boldsymbol{\sigma}'} \cdot \begin{pmatrix} \hat{\boldsymbol{k}} \times \hat{\boldsymbol{k}'} \\ 4 & 43 \end{pmatrix} \right] \sum_{j} e^{i(\boldsymbol{k}-\boldsymbol{k}')\cdot\boldsymbol{r}_{j}}$$
spin-orbit scatt.

Current density with spin
$$\sigma$$
: $\hat{j}_{\sigma} = e \sum_{k\sigma} \left[\frac{hk}{m} + \omega_k^{\sigma} \right] a_{k\sigma}^{\dagger} a_{k\sigma}$

Anomalous velocity:
$$\omega_k^{\sigma} = \frac{\lambda_{so}}{k_F \tau_{imp}} \left[\sigma_{\sigma\sigma} \times \hat{k} \right] \longrightarrow \text{ side jump}$$

Fermi distribution function:

$$f_{k\sigma} = f_{k\sigma}^{0} - \tau_{imp} v_k \cdot \nabla f_{k\sigma}^{0} + \alpha_{SS} \tau_{imp} \left[\sigma_{\sigma\sigma} \times \frac{hk}{m} \right] \cdot \nabla f_{k\sigma}^{0} \longrightarrow \text{skew scattering}$$
$$\alpha_{SS} = (2\pi/3)\lambda_{S0} N(0) u_{imp}$$

Spin Hall conductivity:

 $\begin{cases} \boldsymbol{J}_{q} = \boldsymbol{j}_{q} + \boldsymbol{\alpha}_{H} \left[\boldsymbol{x} \times \boldsymbol{j}_{s} \right] \\ \boldsymbol{J}_{s} = \boldsymbol{j}_{s} + \boldsymbol{\alpha}_{H} \left[\boldsymbol{x} \times \boldsymbol{j}_{q} \right] \end{cases}$ **spin** // *x* $\begin{cases} j_q = \sigma_N E \\ j_s = -\sigma_N \nabla (\delta \mu_N / e) \end{cases}$ $\begin{vmatrix} J_{q,x} \\ J_{s,y} \end{vmatrix} = \begin{vmatrix} \sigma_{N} & -\sigma_{SH} \\ \sigma_{SH} & \sigma_{N} \end{vmatrix} \begin{vmatrix} E_{x} \\ -\nabla_{y}\delta\mu_{N}/e \end{vmatrix}$ $\begin{bmatrix} J_{s,x} \\ J_{a,y} \end{bmatrix} = \begin{bmatrix} \sigma_{N} & -\sigma_{SH} \\ \sigma_{SH} & \sigma_{N} \end{bmatrix} \begin{bmatrix} -\nabla_{x} \delta \mu_{N}/e \\ E_{y} \end{bmatrix}$ $\sigma_{SH} = \sigma_{SH}^{SS} + \sigma_{SH}^{SJ}$

Room Temperature Spin Hall Effect

T. Kimura (ISSP, RIKEN), Y. Otani (ISSP, RIKEN), T. Sato (ISSP) S. Takahashi (IMR, CREST), S. Maekawa (IMR, CREST) (Phys. Rev. Lett. 98, 156601(2007))

``Conversion between charge-current and spin-current ''

Nonlocal Spin Hall device

Spin-current induced Spin Hall effect

(Kimura *et al.*)

Charge-current induced Spin Hall effect

Nonlocal Spin Hall resistivity

Spin-current induced SHE

Onsager Reciprocal Relation!!

Spin-current induced Spin Hall effect:

Valenzuela & Tinkham:

(*Nature <u>442</u>, 176 (2006))*

 $k_{\rm F}$ =1.5 × 10⁸ cm⁻¹ (Au)

	$\lambda_{ m N}$	$ ho_{ m N}$	$ ho_{ m N} \lambda_{ m N}$	$ au_{ m sf}$ / $ au$	$\lambda_{ m so}$
Al ^{b2}	705 nm	5.88 μΩcm	4.15 × 10 ⁻¹⁰ Ω cm ²	1.8×10^4	0.011

O Side jump analysis:

Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect E. Saitoh *et al.*, APL88 (2006)

Spin pumping:

$$\left[\boldsymbol{I}_{S}\right]_{j}^{\alpha} \propto \left(\boldsymbol{S} \times \frac{\partial \boldsymbol{S}}{\partial t}\right)_{\alpha}$$

Spin-orbit coupling : λ_{so}

$$\lambda_{\rm N} = \sqrt{D\tau_{\rm sf}}$$

$$\rho_{\rm N} = \frac{m}{ne^2\tau}$$

$$\rho_{\rm N} \lambda_{\rm N} = \frac{\sqrt{3}\pi}{2k_{\rm F}^2} \frac{h}{e^2} \sqrt{\frac{\tau_{\rm sf}}{\tau}}$$

$$\frac{1}{\frac{\tau}{\tau_{\rm sf}}} = \frac{4}{9} \lambda_{\rm so}^2$$

$$R_{\rm K} = h/e^2 \approx 25.8 \text{ k}\Omega$$

T=4.2K

 $k_{\rm F}$ =1.5 × 10⁸ cm⁻¹

	$\lambda_{ m N}$	$ ho_{ m N}$	$ ho_{ m N} \lambda_{ m N}$	$ au_{ m sf}$ / $ au$	$\lambda_{ m so}$
Alc	705 nm	5.88 μΩcm	41.5 × 10 ⁻¹¹ Ω cm ²	18000	0.011
Cu ^a	1000 nm	1.43 μΩcm	$14.3 \times 10^{-11} \Omega \text{cm}^2$	2100	0.033
Cu ^b	1500 nm	1.00 μΩcm	$15.0 \times 10^{-11} \Omega cm^2$	2300	0.031
Agd	195 nm	3.50 μΩcm	6.8 × 10 ⁻¹¹ Ω cm ²	475	0.07
Aue	90 nm	2.45 μΩcm	$2.2 \times 10^{-11} \Omega \mathrm{cm}^2$	50	0.21
Pt ^f	14 nm	12.8 μΩcm	$1.8 \times 10^{-11} \Omega \mathrm{cm}^2$	33	0.26

a) Jedema *et. al.*, b) Kimura *et. al.*(77K), c) Valenzuela&Tinkham, d) Godfrey&Johnson e) Seki *et al.*.(RT), f) Kurt *et. al.*

$$\frac{\alpha_{\rm H}({\bf Pt})}{\alpha_{\rm H}({\bf Al})} = 30, \qquad \frac{\lambda_{\rm so}({\bf Pt})}{\lambda_{\rm so}({\bf Al})} = 30,$$

Spin-orbit interaction strength in Pt and Au is about 30 times larger than that in Al.

Pt, Au: *Strong spin-orbit material*

- Spin absorber
- Spin generator

- Spin-injection Hall device with a Josephson junction.
 - Hall voltage $V_{\rm H}$ generates ac Josephson effect.

Spin Current vs. Charge Current

in Magnetic Nanostructures

S. Maekawa

(IMR, Tohoku University)

Contents: (i) Spin current, (ii) Spin accumulation, (iii) Spin Hall effect, (iv) Spin current pumping.

(Charge current \iff Spin Current)