Yukawa International Seminar 2007 "Interaction and Nanostructural Effects in Low-Dimensional Systems" November 5-30, 2007, Kyoto

When Landau and Lifshitz meet Unconventional Quantum Criticalities

November 21, 2007 Kyoto

M. Imada Univ. Tokyo

Collaboration with T. Misawa, Y. Yamaji, Y.Z. Zhang

Conventional picture of QCP ; Landau's lineage

QCP: same concept with classical symmetry breaking but in *d* + *z* dim.

itinerant electrons magnetism Moriya,Hertz,Millis

h low-energy excitation: bosonic fluctuations

14. [14]/J]

Quantum Critical Phenomena beyond Standard Picture

4f, 5f YbRh₂Si₂, CeRu₂Ge₂, UGe₂, URu₂Si₂, CeIn₃, CeIn₃, Ce(Cu,Au)₆,

3d,4d ZrZn₂, MnSi, NiS₂, Sr₃Ru₂O₇, YCo5,

YbRh2Si2; weak antiferromagnetHeavy fermion compoundQCP by
~2JK2/mole~2JK2/molemagnetic field or pressure

"Ferromagnetic" fluctuation around QCP ~ $T^{-0.6}$ $M \sim R^{1/2}$

Puzzling exponentsMoriya, UedaC/TRG study; Hertz, MillisC/T0QFermi liquid T 2constant

11. 111/1/D/

11. 11/1/ D/

Hint: Near First-Order Transition

YbRh2Si2first order transitionunder pressure at H0

Knebel, Flouquet *et al.* JPSJ 75 (2006) 14709 ZrZn₂ first order above 1.65GPa

Uhlarz, Pfleiderer, Hayden (2004)

Unconventional QCP found in various compounds

proximity of 1st order magnetic transition

4f,5f YbRh₂Si₂, CeRu₂Ge₂,Fontes et al, UGe₂ Huxley et al. URu₂Si₂, CeIn₃, Co(S,Se)₂,YCo₅, CeIn₃

3d,4d $ZrZn_2$, MnSi, NiS₂, $Sr_3Ru_2O_7$

1VI. 111/1/D/

Diverging *charge* fluctuations at T_c

14. 11412D2

Origin of deviation from standard QCP

Key:

Proximity of first-order transition

Novel concept beyond conventional GLW framework of QCP

Two categories of quantum phase transitions

Two major sources of our interest in condensed matter Interaction Landau **Quantum mechanics** Interaction effect symmetry-breaking transition Quantum effect **topological** transition ex. Lifshitz tr. in momentum space Lifshitz

11. 11/1/ D/

Lineage of Lifshitz: topological transition

"quantum order": Wen gapless phase gapful phase of topological order

topology change of Fermi surface; Lifshitz transition, MI transition

 $k_{\rm r}$

 k_{y}

topological transition

Quantum Hall state

QSH

Noninteracting No change in symmetry continuous transition at T = 0

proximity of first-order transition

Physics of Marginal Quantum Critical Phenomena

Metal-Insulator Transitions

Hartree-Fock Phase Diagram

Metal-Insulator Transition for 2D Hubbard Model

non-Ginzburg-Landau-Wilson scheme $F(Y) - F(Y = 0) = AY + \frac{1}{2}BY^2 + \frac{1}{3!}CY^3 + \cdots$ Y: order parameter measured from MI transition Y > 0; insulator, Y < 0; metal unique expansiotn, but B, C : jump at Y=0because of jump of DOS at E_F non-Ginzburg-Landau-Wilson topological nature $B_m > 0$; continuous; A > 0 metal, A < 0 insulator $B_m < 0$; first order $A = B_m = 0$; MQCP

 $\beta = 1, \delta = 2, \gamma = 1$ new universality class

experimental confirmation: κ-(ET)₂Cu[N(CN)₂]Cl

Electron differentiation in momentum space differentiation in topological character Y.Z. Zhang of transition & Imada momentum space **Phys.Rev.B Extension of DMFT** (2007)T *t-t*'Hubbard with t'/t = -0.2Hanasaki & Imada (2006) Civelli.Kotliar et al. PRL 95 (2005) 106402 2π U=3.5D/8 Macridin, Jarrell et al. PRL 97 (2006) 036401 x= 0.05 x= 0.03 A(k,X = 0**Far from** 0.0 **ARPES data for cuprates**^{1.5} **picture of** Yoshida et al. x = 0.10x= 0.15 x= 0.07 local criticality Arc structure 0.5 0.5 1.0 0.0 0.5 0 k_x (π/a)

pseudogap absence of coherent peak

Y. Z. Zhang	Shin's
& Imada	
Phys.Rev.B	group
(2007)	SrVO ₃

Dramatically different from single-site DMFT

11. 111/1/D/1

Unconventional Lifshitz transition in ZrZn₂

Another proximity of first-order transition

Yamaji: Poster PS28

Lifshitz transition of ZrZn₂

neck-collapsing Lifshitz transition MQCP

de Haas **Singh** (2002) Harima (2007) **Yates et al. (2003) Freeman** (1988) Harima $\begin{pmatrix} 0 & 0.5 \\ 0 & 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.2 \\$ 3.8 $(eV^{-1}f.u.^{-1}spin^{-1})$ (b) 3.0 Q 2.2 0.2 -0.020.02 $\mathcal{E} = \hat{\mu}_{\rm L}({\rm eV})$ $\mathcal{E} = \mu_{T} (eV)$

Density of states from LDA

$$= {}_{0}+{}^{+}{}_{1/2}(-\mu_{L})^{1/2}+...$$

Y magnetization

$$F(Y) - F(Y = 0) = aY + \frac{1}{2}bY^2 + c'Y^{5/2} + \frac{1}{3!}cY^3 + \cdots$$

beyond Wohlfarth-Rhodes-Shimizu

⁶ description

Quantum Tricritical Phenomena

Proximity of 1st order transition within GLW scheme

Case of YbRh₂Si₂

Misawa: poster PS27

classical tricritical point: r = 0, u = 0

concomitant divergence of S(Q) at ordering wavenumber Q (AF) and S(q=0) at uniform mode q=0 (F)

Spin Fluctuation Theory of Quantum Tricriticality

Coexistence of ferromagnetic fluctuations with AF Stronger non Fermi liquid

11/1. 111/1/D/

Quantum tricriticality vs. experiments

quantum tricriticality with new universality class: agreement with YbRh₂Si₂ proximity of 1st order transition

Summary

Unconventional quantum critical phenomena arising from proximity of 1st order transitions **Interaction drives topological transition to 1st order & symmetry breaking Internal structure of MIT: QCL, MQCP, Z, line** MOCP new universality class : diverging k = 0 mode electron differentiation Mott transitions $-ET, V_2O_3, \dots$ Lifshitz transitions ZrZn, **Quantum tricriticality** unconventional non-Fermi liquid Diverging fluctuations at k = 0YbRh Siz Dr

Low-energy excitation around MQCP Quasiparticle survives or fractionalization? Detailed structure of electron differentiation

MQCP structure for nontrivial topological order QH QSH

Effects of MQCP on superconductivity

