Ground states of $\mathbf{t}-\mathrm{t}^{\prime}-\mathrm{J}$ Model

for High-Tc superconductivity

Masao Ogata (Univ. of Tokyo)

- Mott transition (Brinkman-Rice transition) $\mathrm{t}-\mathrm{t}^{\prime}-\mathrm{U}$ Hubbard model at half-filling
H. Yokoyama (Tohoku)
T. Watanabe, Y. Tanaka (Nagoya)
First order phase transition: doublon-holon bound state (RVB-Insulator)
- Doped case

Relation between Hubbard model and $\mathrm{t}-\mathrm{J}$ model is clarified.

Weak coupling $U<W$	BCS-like
Strong coupling $U>W$	$t-J$ like $=$ doped Mott insulator

- t-J -like region

Coexistence of AF and SC
Effects of t^{\prime} : hole doped vs electron doped

$$
\left(\mathrm{t}^{\prime}<0\right) \quad\left(\mathrm{t}^{\prime}>0\right)
$$

Variational Monte Carlo (VMC) study (cf. BCS variational theory)

$\underline{\boldsymbol{t}-\boldsymbol{t}^{\prime}-\boldsymbol{J} \text { Model for high-Tc superconductivity }}$

$$
\mathcal{H}=-\sum_{(i, j) \sigma} P_{\mathrm{G}}\left(t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+\text { h.c. }\right) P_{\mathrm{G}}+J \sum_{\langle i, j\rangle} s_{i} \cdot S_{j}
$$

$\left.t_{\text {cf. Spin-Liquid state } \kappa-(B E D T-T T F}\right)_{2} \mathrm{Cu}_{2}(\mathrm{CN})_{3}$

- Origin of next-nearest hopping, $\boldsymbol{t}^{\boldsymbol{\prime}}$ term

$$
t^{\prime}<0 \text { for hole-doped cuprates }
$$

$\left|t^{\prime}\right|$--- larger in BSCCO smaller in LSCO
determining Tc

Matsukawa-Fukuyama $(1989,1990)$

Mott transition at half-filling

- "Doped Mott insulator" ----- What is Mott insulator?
t-J model \rightarrow Heisenberg model $(\delta \rightarrow 0)$
We need to study Hubbard model.
- Brinkman-Rice transition doublon number $\rightarrow 0$ at $U_{C} \quad$ (second-order phase transition)

However this Brinkman-Rice transition is not observed in VMC !

Yokoyama-Shiba, JPSJ (1987)

Mott transition at half-filling

Brinkman-Rice transition is not observed in VMC.

Yokoyama-Shiba, JPSJ (1987)
There is no phase transition.

Mott transition at half-filling

Brinkman-Rice transition is not observed in VMC.

Yokoyama-Shiba, JPSJ (1987)
There is no phase transition.

We modify variational states.

Mott transition as a first-order (a liquid-gas phase transition)

Variational wavefunction

$$
\Psi_{\mathrm{SC}}=\mathcal{P}_{Q} \mathcal{P}_{\mathrm{G}}|\operatorname{BCS}(\Delta)\rangle
$$

P_{G} determines the number of doublons
P_{Q} : Nearest-neignior doubion - noion correiation

Doublon-holon bound states are favored in wave functions
free doublon \& holon

conductive

bound state

insulating

Mott Transition

Correlation factors

$$
\begin{aligned}
& \mathcal{P}_{\mathrm{G}}=\prod\left[1-(1-g) n_{i \uparrow} n_{i \downarrow}\right] \longleftarrow \text { Usual Gutzwiller factor } \\
& \mathcal{P}_{Q}=\prod^{\left(1-\mu Q_{i}^{\tau}\right)} \\
& \text { nearest-neighbor doublon-holon } \\
& \text { correlation } \\
& Q_{i}^{\tau}=\prod_{\tau}\left[d_{i}\left(1-e_{i+\tau}\right)+e_{i}\left(1-d_{i+\tau}\right)\right] \\
& \begin{array}{ll}
d_{j}=n_{j \uparrow} n_{j \downarrow} & \uparrow \downarrow \\
e_{j}=\left(1-n_{j \uparrow}\right)\left(1-n_{j \downarrow}\right) & \text { doublon } \\
\text { holon }
\end{array}
\end{aligned}
$$

Doublon-holon bound states are favored in wave functions (g, μ, Δ are variational parameters)

Obtained Phase diagram
 half filling ($\delta=0$)

t-t'-U Hubbard model

$\mathrm{T}=0$ Variational Theory

$$
\begin{aligned}
& \Psi_{\mathrm{SC}}=\mathcal{P}_{Q} \mathcal{P}_{\mathrm{G}}|\operatorname{BCS}(\Delta)\rangle \\
& \Psi_{\mathrm{AF}}=\mathcal{P}_{Q} \mathcal{P}_{\mathrm{G}}|\operatorname{AF}(m)\rangle
\end{aligned}
$$

Δ is finite !
$\times L=10$
$+L=12$
Qualitatively same as Imada's group

Yokoyama, Ogata, Tanaka, J. Phys. Soc. Japan 75, 114706 (2006)

Obtained Phase diagram
 half filling ($\delta=0$)

t-t'-U Hubbard model

T=0 Variational Theory

$$
\begin{aligned}
& \Psi_{\mathrm{SC}}=\mathcal{P}_{Q} \mathcal{P}_{\mathrm{G}}|\operatorname{BCS}(\Delta)\rangle \\
& \Psi_{\mathrm{AF}}=\mathcal{P}_{Q} \mathcal{P}_{\mathrm{G}}|\operatorname{AF}(m)\rangle
\end{aligned}
$$

Δ is finite!
$\times L=10$
$+L=12$
Qualitatively same as Imada's group

Yokoyama, Ogata, Tanaka, J. Phys. Soc. Japan 75, 114706 (2006)

half filling ($\delta=0$)

First-order Mott transition

First-order Mott transition

- Energy crossing
First-order Mott transition
(similar to gas-liquid transition)

Momentum distribution function

nodal point ($\pi / 2, \pi / 2$)
$U<U_{C}$: Fermi surface (metallic)
$U>U_{C}:$ no Fermi surface (insulator)

d-wave to RVB insulator

half filling ($\delta=\mathbf{0}$)

- d-wave pair correlation function

$$
P_{d}(\boldsymbol{r})=\frac{1}{N} \sum_{i} \sum_{\tau, \tau^{\prime}}(-1)^{\tau+\tau^{\prime}}\left\langle\Delta_{\tau}^{\dagger}\left(\boldsymbol{r}_{i}\right) \Delta_{\tau^{\prime}}\left(\boldsymbol{r}_{i}+\boldsymbol{r}\right)\right\rangle
$$

d-wave to RVB insulator

half filling ($\delta=0$)

- d-wave pair correlation function

$$
P_{d}(\boldsymbol{r})=\frac{1}{N} \sum_{i} \sum_{\tau, \tau^{\prime}}(-1)^{\tau+\tau^{\prime}}\left\langle\Delta_{\tau}^{\dagger}\left(\boldsymbol{r}_{i}\right) \Delta_{\tau^{\prime}}\left(\boldsymbol{r}_{i}+\boldsymbol{r}\right)\right\rangle
$$

d-wave to RVB insulator

half filling ($\delta=0$)

- d-wave pair correlation function

$$
P_{d}(\boldsymbol{r})=\frac{1}{N} \sum_{i} \sum_{\tau, \tau^{\prime}}(-1)^{\tau+\tau^{\prime}}\left\langle\Delta_{\tau}^{\dagger}\left(\boldsymbol{r}_{i}\right) \Delta_{\tau^{\prime}}\left(\boldsymbol{r}_{i}+\boldsymbol{r}\right)\right\rangle
$$

d-wave to RVB insulator

half filling ($\delta=0$)

- d-wave pair correlation function

$$
P_{d}(\boldsymbol{r})=\frac{1}{N} \sum_{i} \sum_{\tau, \tau^{\prime}}(-1)^{\tau+\tau^{\prime}\left\langle\Delta_{\tau}^{\dagger}\left(\boldsymbol{r}_{i}\right) \Delta_{\tau^{\prime}}\left(\boldsymbol{r}_{i}+r\right)\right\rangle}
$$

doublon-holon exist, but
form virtual states to induce J

d-wave to RVB insulator

half filling ($\delta=0$)

- d-wave pair correlation function

$$
P_{d}(\boldsymbol{r})=\frac{1}{N} \sum_{i} \sum_{\tau, \tau^{\prime}}(-1)^{\tau+\tau^{\prime}}\left\langle\Delta_{\tau}^{\dagger}\left(\boldsymbol{r}_{i}\right) \Delta_{\tau^{\prime}}\left(\boldsymbol{r}_{i}+\boldsymbol{r}\right)\right\rangle
$$

Wave function has
doublon-holon exist, but
U_{C}
form virtual states to induce J

> d-wave is enhanced at $U / \mathrm{t}<6.5$ $\mathrm{t}^{\prime} / \mathrm{t} \sim-0.25$

d-wave to RVB insulator

half filling ($\delta=0$)

- d-wave pair correlation function

$$
P_{d}(\boldsymbol{r})=\frac{1}{N} \sum_{i} \sum_{\tau, \tau^{\prime}}(-1)^{\tau+\tau^{\prime}}\left\langle\Delta_{\tau}^{\dagger}\left(\boldsymbol{r}_{i}\right) \Delta_{\tau^{\prime}}\left(\boldsymbol{r}_{i}+\boldsymbol{r}\right)\right\rangle
$$

doublon-holon exist, but form virtual states to induce J
d-wave is enhanced at U / t < 6.5 $\mathrm{t}^{\prime} / \mathrm{t} \sim-0.25$

Wave function has
U_{c} d-wave order parameter, but P_{d} vanishes.
"RVB insulator"

RVB insulator (Anderson 1987)

$$
\begin{aligned}
& P_{G}\left|\Phi_{\mathrm{SC}}\right\rangle=P_{G} \prod_{\boldsymbol{k}}\left[u_{\boldsymbol{k}}+v_{\boldsymbol{k}} c_{\boldsymbol{k} \uparrow}^{\dagger} c_{-\boldsymbol{k} \downarrow}^{\dagger}\right]|0\rangle \\
&=P_{G}\left(\prod_{\boldsymbol{k}} u_{\boldsymbol{k}}\right) \prod_{\boldsymbol{k}}\left[1+\frac{v_{\boldsymbol{k}}}{u_{\boldsymbol{k}}} c_{\boldsymbol{k} \uparrow}^{\dagger} c_{-\boldsymbol{k} \downarrow}^{\dagger}\right]|0\rangle \\
& \left.=P_{G}\left(\prod_{\boldsymbol{k}} u_{\boldsymbol{k}}\right) \prod_{\boldsymbol{k}} \exp \left(\frac{v_{\boldsymbol{k}}}{u_{\boldsymbol{k}}} c_{\boldsymbol{k} \uparrow}^{\dagger} c_{-\boldsymbol{k} \downarrow}^{\dagger}\right) \right\rvert\, 0 \\
&=P_{G}\left(\prod_{\boldsymbol{k}} u_{\boldsymbol{k}}\right) \exp \left(\sum_{\boldsymbol{k}} a_{\boldsymbol{k}} c_{\boldsymbol{k} \uparrow}^{\dagger} c_{-\boldsymbol{k} \downarrow}^{\dagger}\right) \mid 0 \\
& \begin{array}{l}
\text { Projected BCS state } \\
\text { RVB insulator }
\end{array} \\
&=P_{G}\left(\prod_{\boldsymbol{k}} u_{\boldsymbol{k}}\right) \exp \left(\sum_{i, j} a_{i, j} c_{i \uparrow}^{\dagger} c_{j \downarrow}^{\dagger}\right)|0\rangle, \\
& P_{N} P_{G}\left|\Phi_{\mathrm{SC}}\right\rangle= \frac{1}{(N / 2)!}\left(\prod_{\boldsymbol{k}} u_{\boldsymbol{k}}\right) P_{G}\left(\sum_{i, j} a_{i, j} c_{i \uparrow}^{\dagger} c_{j \downarrow}^{\dagger}\right)^{\frac{N}{2}}|0\rangle \\
& a_{i, j}=\frac{1}{N} \sum_{\boldsymbol{k}} a_{\boldsymbol{k}} \mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)}, \\
& a_{\boldsymbol{k}}=\frac{v_{\boldsymbol{k}}}{u_{\boldsymbol{k}}}=\frac{\varepsilon_{\boldsymbol{k}}^{(0)}-\mu+\sqrt{\left(\varepsilon_{\boldsymbol{k}}^{(0)}-\mu\right)^{2}+\mid \Delta_{\boldsymbol{k}}^{2}}}{}
\end{aligned}
$$

Phase diagram

half filling ($\delta=0$)
$\mathrm{T}=0$ Variational Theory
t-t'-U Hubbard model

Yokoyama, Ogata, Tanaka, J. Phys. Soc. Japan 75, 114706 (2006)

half filling ($\delta=0$)

t-t'-U Hubbard model

Hsu, Giamarchi-Lhuillier, Himeda-Ogata

II. Doped Case less-than-half filling

t-t'-U Hubbard model

II. Doped Case less-than-half filling

t-t'-U Hubbard model

II. Doped Case less-than-half filling

t-t'-U Hubbard model

II. Doped Case less-than-half filling

t-t'-U Hubbard model

II. Doped Case less-than-half filling

t-t'-U Hubbard model

Doped Case

d-wave pair correlation function

Crossover, but features are very different.

Doped Case

d-wave pair correlation function

Crossover, but features are very different.

Doped Case

d-wave pair correlation function

- Small $U\left(U<U_{\text {co }}\right)$
weak-coupling region, consistent with QMC

Doped Case

Crossover, but features are very different.

Crossover, but features are very different.

Doped Case

d-wave pair correlation function

Large $U\left(U>U_{c o}\right)$
bound state + free holons
"Doped Mott insulator"
doublon-holon bound state
= n.n. doublon-holon
$=$ virtual process inducing J -term

- Small $U\left(U<U_{\text {co }}\right)$
weak-coupling region, consistent with QMC
$\boldsymbol{t}-\boldsymbol{t}^{\boldsymbol{\prime}}-\boldsymbol{J}$ Model

doping

doping

In the large $U\left(U>U_{\text {co }}\right)$ region, we study

- Coexistence of AF and d-wave
- Effects of $\boldsymbol{t}^{\boldsymbol{\prime}}$

AF and SC coexist in $\boldsymbol{t}-\boldsymbol{J}$ model

$$
t^{\prime}=0
$$

Inaba et al., Physica C (1996)
(slave boson mean-field)

Himeda-Ogata, PRB 60 (1999)
(variational Monte Carlo $T=0$)

The best variational state for $0<\delta<0.1$

$$
P_{\mathrm{G}}\left|\Psi_{\mathrm{SC}-\mathrm{AF}}\left(\Delta_{\mathrm{var}}, \Delta_{\mathrm{AF}}, \mu\right)\right\rangle
$$

Coexistence in the Bulk

Experimental phase diagram

In clean systems, AF and SC coexist !
H. Mukuda et al, PRL 96, 087001 (2006)

H. Mukuda et al, PRL 96, 087001 (2006)

Obtained phase diagram in $t-t^{\prime}-J$ model

RVB order parameter in variational wave functions

This will be related to Pseudo-Gap .
Excitated states will have gap proportional to $\Delta_{\text {var }}$

$$
\begin{array}{r}
\left|\Psi_{\boldsymbol{k} \uparrow}^{+}\right\rangle=P_{G} \gamma_{\boldsymbol{k}}^{\dagger}\left|\Phi_{\mathrm{SC}}\right\rangle=P_{G} c_{\boldsymbol{k} \uparrow}^{\dagger}\left|\Phi_{\mathrm{SC}}\right\rangle \\
\gamma_{\boldsymbol{k}}^{\dagger}=u_{\boldsymbol{k}} c_{\boldsymbol{k} \uparrow}^{\dagger}-v_{\boldsymbol{k}} c_{-\boldsymbol{k} \downarrow}
\end{array}
$$

Expectation value of SC order parameter

$$
\langle\mathcal{O}\rangle \equiv \frac{\langle\psi| \mathcal{O}|\psi\rangle}{\langle\psi \mid \psi\rangle}=\frac{\left\langle\psi_{0}\right| P_{G} \mathcal{O} P_{G}\left|\psi_{0}\right\rangle}{\left\langle\psi_{0}\right| P_{G} P_{G}\left|\psi_{0}\right\rangle}
$$

Paramekanti et al.
$\Delta_{\text {exp }}$ is different from $\Delta_{\text {var }}$
$\Delta_{\text {exp }}$ will be related to Tc.
$\Delta_{\text {var }}$ will be related to Pseudo Gap .

Conclusions

- Modified variational state doublon-holon bound state is important.
- Mott transition
- Doped case
- small U (BCS-like) (weak-coupling region)
- large U (non-BCS) ($t-J$ region)
doublon-holon bound state + free holons

$t-\boldsymbol{J}$-like region
Coexistence of AF and SC ------- cf. Mukuda Effects of t^{\prime} : hole doped vs electron doped

$$
\left(\mathrm{t}^{\prime}<0\right) \quad\left(\mathrm{t}^{\prime}>0\right)
$$

Conclusions

- Modified variational state doublon-holon bound state is important.
- Mott transition
"RVB insulator" doublon-holon bound state
- Doped case
- small U (BCS-like) (weak-coupling region)
- large U (non-BCS) ($t-J$ region)
doublon-holon bound state + free holons

$t-\boldsymbol{J}$-like region
Coexistence of AF and SC ------ cr. Mukuda Effects of t^{\prime} : hole doped vs electron doped

$$
\left(\mathrm{t}^{\prime}<0\right) \quad\left(\mathrm{t}^{\prime}>0\right)
$$

Conclusions

- Modified variational state doublon-holon bound state is important.
- Mott transition
"RVB insulator" doublon-holon bound state
- Doped case "Doped Mott insulator"
- small U (BCS-like) (weak-coupling region)
- large U (non-BCS) ($t-J$ region)
doublon-holon bound state + free holons

\boldsymbol{t} - \boldsymbol{J}-like region
Coexistence of AF and SC ------- cf. Mukuda Effects of t^{\prime} : hole doped vs electron doped

$$
\left(\mathrm{t}^{\prime}<0\right) \quad\left(\mathrm{t}^{\prime}>0\right)
$$

Conclusions

- Modified variational state doublon-holon bound state is important.
- Mott transition
"RVB insulator" doublon-holon bound state
- Doped case
"Doped Mott insulator"
- small U (BCS-like) (weak-coupling region)
- large U (non-BCS) ($t-J$ region)
doublon-holon bound state + free holons

$t-\boldsymbol{J}$-like region
Coexistence of AF and SC ------- cf. Mukuda Effects of t^{\prime} : hole doped vs electron doped

$$
\left(\mathrm{t}^{\prime}<0\right) \quad\left(\mathrm{t}^{\prime}>0\right)
$$

