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The quantum Hall state, a topologlcally non- tr|V|aI __

state of matter
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O-Xy = nr

e Following Laughlin’s gauge argument,
TKNN showed that n is a topological
integer, called the first Chern number.
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The Generalizations of the Hall Effect

-

Ordinary Hall effect Anomalous Hall effect (Pure) spin Hall effect
with magnetic field H with magnetization M no magnetic field necessary

Hall voltage but R Mo Hall voltage but

no spin accumulation Hall voltage and spin accumulation
spin accumulation

e Theoretical predictions of the intrinsic spin Hall effect (Science 2003, PRL 2004).

e The spin Hall effect has now been experimentally observed. (Science 2004, PRL
2004)

What about the quantum spin Hall effect?



Quantum Spin Hall Effect

e The QSH state can be thought of as
two copies of QH states, one for each
spin component, each seeing the

opposite magnetic field. (Bernevig and
Zhang, PRL, 2006)

e The QSH state does not break the
time reversal symmetry, and can exist
without any external magnetic field.

H =16(pxE)

e Insulating gap in the bulk.

e Helical edge states: Two states
with opposite spins counter-
propagate at a given edge.
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Chiral (QHE) and helical (QSHE) liquids in D=1
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The QHE state spatially separates the two The QSHE state spatially separates the

chiral states of a spinless 1D liquid
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four chiral states of a spinful 1D liquid
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No go theorems: chiral and helical states can never be constructed microscopically
from a purely 1D model (Wu, Bernevig, Zhang, 2006; Nielsen, Ninomiya, 1981)



Time reversal symmetry in quantum mechanics

e Wave function of a particle
with integer spin changes by 1

under 2x rotation. Spin=1
e Wave function of a half-integer

spin changes by -1 under 2n GD
rotation.

e Kramers theorem, in a time o
reversal invariant system with

half-integer spins, T2=-1, all

states for degenerate doublets.

» Application in condensed Spin=1/2

matter physics: Anderson’s
theorem. BCS pair=(k,T)+(-k,{).
General pairing between
Kramers doublets.

y=-4




The topological distinction between a conventional

Insulator and a QSH insulator
Kane and Mele PRL, (2005); Wu, Bernevig and Zhang, PRL (2006); Xu and Moore, PRB (2006)

e Band diagram of a conventional insulator, a conventional insulator with accidental
surface states (with animation), a QSH insulator (with animation). Blue and red
color code for up and down spins.
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From topology to chemistry: the search for the QSH state

» Graphene — spin-orbit coupling only about 10-3meV. Not realizable in
experiments. (Kane and Mele, 2005, Yao et al, 2006, MacDonald group 2006)

e Quantum spin Hall with Landau levels — spin-orbit coupling in GaAs too small.
(Bernevig and Zhang, PRL, 2006)

« QSH in Bi? (Murakami, 2006)

* Type Il quantum
wells work. HgTe has a
negative band gap!
(Bernevig, Hughes and Zhang,
Science 2006)

- Tuning the thickness of
the HgTe/CdTe
guantum well leads to a
topological quantum
phase transition into the
QSH state.




Band Structure of HgTe
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Effective tight-binding model

Square lattice with 4-orbitals per site:
‘s,TMs,iM(px +ipy,T>,‘—(pX —ipy),¢>

Nearest neighbor hopping integrals. Mixing matrix
elements between the s and the p states must be

odd in k.
h(k 0
Heff (kx’ ky) :( E) ) h*(—k)j

K m(k) A(sink, —isink,)) 4 (k)
K= Agsink, +isink,) R R
— m _ Ak - Iky) Aoy = 1Asign(m) Acxy =—Acxy
Ak +ik)  —m 2

Relativistic Dirac equation in 2+1 dimensions, with a tunable mass term!



Quantum Well Sub-bands

Let us focus on E1, H1
bands close to
crossing point
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Mass domain wall

Cutting the Hall bar along the y-direction we see a domain-wall structure in the
band structure mass term. This leads to states localized on the domain wall
which still disperse along the x-direction.
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Experimental setup

» High mobility samples
of HgTe/CdTe quantum
wells have been
fabricated.

e Because of the small
band gap, about several
meV, one can gate dope
this system from n to p
doped regimes.

e Two tuning parameters,
the thickness d of the
guantum well, and the
gate voltage.

Si,N,/SiO,, 110 nm
Hg,.Cd,,Te, 25 nm
Hg,.Cd,.Te: 1, 9 nm

Hg,.Cd,,Te, 10 nm

HgTe well, d,,

Hg,.Cd,,Te, 10 nm
Hg,.Cd,,Te : I, 9 nm
Hg,.Cd,,Te, 100 nm

CdTe buffer

CdZnTe (001)
substrate




Experimental Predictions o "
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d < d., normal regime d > d., inverted regime



Smoking gun for the helical edge state: Magneto-
Conductance

The crossing of the helical edge €
states is protected by the TR /\
symmetry. TR breaking term
such as the Zeeman magnetic
field causes a singular
perturbation and will open up a
full insulating gap: k L

E, < g|B
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Conductance now takes the
activated form:
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Experimental evidence for the QSH state in HgTe
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Magnetic field dependence of the residual conductance
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A brief history of fractional charge

e Jackiw & Rebbi (PRD (1976)) predicted that a fractional charge e/2 is carried
by the mass domain wall (soliton) of 1-d Dirac model.

e Su, Schrieffer and Heeger (PRB (1979)) presented a model of polyacetylene
with two-fold degenerate ground states. A domain wall defect carries
fractional charge e/2.
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Soliton

e Because of both up and down spin components carry fractional charge e/2,
the net system only carries integer charge. Fractional charge has never
been observed in any 1D system!



Fractional charge in the QSH state

e Since the mass is proportional to the magnetization, a magnetization
domain wall leads to a mass domain wall on the edge.
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e The fractional charge e/2 can be measured by a Coulomb blockade
experiment, one at the time!
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Topological Mott insulators

e So far, the QSH insulator is a topologically non-trivial band insulator. Can we
have a topological Mott insulator, where the topologically non-trivial gap arises
from interactions, not from band structure?

e Yes, on a honeycomb lattice with U, V1 and V2, one can obtain a TMI phase in
the limit of V2>>U, V1. (Raghu et al, arXiv:0710.0030)

e This model provides an example of dynamic generation of spin-orbit coupling.
(Wu+Zhang, PRL 2004).




Conclusions

PHYSICS

Experiments show that electron spins can

A New State Of Qua ntum Ma‘l‘ter flow without dissipation in a novel electrical

insulator.

Naoto Nagaosa

 QSH state is a new state Magneticfisld—T 4
of matter, topologically | 4
distinct from the
conventional insulators.

e It is predicted to exist in
HgTe quantum wells, in
the “inverted” regime, with
d>d..

e Theoretical predictions Quantum Hall system Quantum spin Hall system
confirmed by experiments.

e Topological Mott
insulators.
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