

Center for Electronic Correlations and Magnetism University of Augsburg

Exact many-electron ground states on triangle, diamond, and pentagon Hubbard chains

Dieter Vollhardt

Yukawa International Conference 2007 on "Interaction and Nanostructural Effects in Low-Dimensional Systems" Kyoto; November 21, 2007

Supported by Deutsche Forschungsgemeinschaft through SFB 484

Outline:

- Construction of exact many-electron ground states
- Exact many-electron ground states on diamond Hubbard chains triangle Hubbard chains
 → application to CeRh₃B₂ pentagon Hubbard chains

In collaboration with Zsolt Gulacsi and Arno Kampf

Correlated electron materials

High sensitivity to small changes of microscopic parameters

- large resistivity changes
- huge volume changes
- high T_c superconductivity
- •strong thermoelectric response
- colossal magnetoresistance
- •gigantic non-linear optical effects

with

Technological applications:

- sensors, switches
- magnets/magnetic storage
- spintronics, e.g., spin valves

"Complexity"

Exact solutions of correlation models particularly important (and difficult)

Construction of exact many-electron ground states

Strategy

Step 1: Cast many-electron Hamiltonian into positive semidefinite form

Step 2: Construct many-electron ground state

$$\hat{P}_{n} |\Psi\rangle = 0 \Longrightarrow \hat{H} |\Psi\rangle = E_{g} |\Psi\rangle$$
ground state
ground-state energy

- Applicable to any model with sufficiently many microscopic parameters
- Works in any dimension
- No "integrability" required

Application to Hubbard and Periodic Anderson model

Brandt, Giesekus (1992) Strack (1993) Strack, Vollhardt (1993, 1994) Orlik, Gulacsi (1998, 2001) Gurin, Gulacsi (2001, 2002) Gulacsi (2002) Sarasua, Continentino (2002, 2004)

Periodic Anderson model in d=3

Exact insulating and itinerant (non-Fermi liquid) ground states at 3/4 filling

Gulacsi, Vollhardt (2003, 2005)

High sensitivity to small changes of microscopic parameters found

1. Exact many-electron ground states on diamond Hubbard chains

> Z. Gulacsi, A. Kampf, DV Phys. Rev. Lett. 99, 026404 (2007)

3 sites per cell \rightarrow 3 bands s=1,2,3 sublattice index $N_c = \#$ cells N = # electrons

N' = # electrons $n = \frac{N}{3N_c}$ electron density

Examples:

Solution I: Flat-band ferromagnetism

Vidal, Doucot, Mosseri, Butaud (2000)

ε=0, 2 electrons: excited singlet eigenstates

- localized if U=0
- delocalized if U>0

Delocalization also for finite densities ?

Mielke, Tasaki (1993)

→ Flat-band ferromagnetism: Realizes ideas of Gutzwiller and Kanamori from 1963 about the origin of itinerant ferromagnetism

Solution II: Correlated half-metal

Itinerant states easier to realize at $\delta \neq \pi/2$?

Itinerant states easier to realize at $\delta \neq \pi/2$?

Transformation of the Hamiltonian into positive semi-definite form

Transformation of the Hamiltonian into positive semi-definite form

$$-\sum_{i\sigma} \hat{A}_{i\sigma}^{\dagger} \hat{A}_{i\sigma} \stackrel{!}{=} \hat{H}_{0} \implies \begin{bmatrix} a_{2}^{*}a_{1} = a_{3}^{*}a_{2} = a_{4}^{*}a_{3} = a_{1}^{*}a_{4} = -te^{i\delta/2} \\ a_{2}^{*}a_{4} = -t_{\perp} \\ a_{3}^{*}a_{1} = -t_{\parallel} \\ |a_{1}|^{2} + |a_{3}|^{2} = \varepsilon + |a_{2}|^{2} = \varepsilon + |a_{4}|^{2} \end{bmatrix}$$

Construction of the ground state

$$\hat{H} = \sum_{\mathbf{i},\sigma} \hat{A}_{\mathbf{i},\sigma} \hat{A}_{\mathbf{i},\sigma}^{\dagger} + U\hat{P} + E_{g}^{II}$$

positive semi-definite

 $\hat{P} = \sum_{i} \hat{P}_{i}, \quad \hat{P}_{i} = (\hat{n}_{i\uparrow} - 1)(\hat{n}_{i\downarrow} - 1) = \begin{cases} 1, & \text{unoccupied site} \\ 0, & \text{at least one electron} \end{cases}$

Ground state

$$|\Psi_{g}^{II}(4N_{c})\rangle = c \left[\prod_{\mathbf{i}} \hat{A}_{\mathbf{i},-\sigma}^{\dagger} \hat{A}_{\mathbf{i},\sigma}^{\dagger}\right] \hat{F}_{\sigma}^{\dagger} |0\rangle \qquad N = 4N_{c} \Leftrightarrow n = 4/3$$
$$n_{\sigma} = 1, n_{-\sigma} = 1/3$$

= 1/3

One σ electron on every lattice site \rightarrow localized - σ electron: spatially extended but localized for $N_c \rightarrow \infty$

Expectation value of hopping term: $\Gamma_{\mathbf{r},-\sigma} = \langle \hat{c}^{\dagger}_{\mathbf{j},-\sigma} \hat{c}_{\mathbf{j}+\mathbf{r},-\sigma} + H.c. \rangle$ $\Gamma_{m,-\sigma} \stackrel{N_c \to \infty}{=} \frac{(-1)^m}{\sqrt{1 + 1/t_\perp}} e^{-m/\xi_-\sigma} , r/a = m$ Solution II: Correlated half-metal

$$N > 4N_c \Leftrightarrow n > 4/3$$

$$\Delta N$$
 - σ electrons added: $n_{\sigma} = 1$, $n_{-\sigma} = 1/3 + \Delta N / N_c$

Ground state

$$\Psi_g^{II}(4N_c + \Delta N)\rangle = \prod_{\alpha=1}^{\Delta N} \hat{c}^{\dagger}_{n_{\alpha},\mathbf{k}_{\alpha},-\sigma} |\Psi_g^{II}(4N_c)\rangle \qquad n_{\alpha}: \ s = 1,2,3$$

plane wave-type states due to $\mbox{-}\sigma$ electrons

 $\rightarrow \Delta N$ - σ electrons itinerant

Ground state for $4/3 < n < 5/3$	 3N_c immobile σ electrons N_c -σ electrons confined to localized Wannier function + ΔN conducting -σ electrons
	• Magnetization $M \propto (1 - \Delta N/N_c) \xrightarrow{\Delta N \to N_c} 0$ → Low carrier-density metallic behavior

Solution II: Correlated half-metal

$$N > 4N_c \Leftrightarrow n > 4/3$$

$$\Delta N$$
 - σ electrons added: $n_{\sigma} = 1$, $n_{-\sigma} = 1/3 + \Delta N / N_c$

Ground state

$$\Psi_g^{II}(4N_c + \Delta N)\rangle = \prod_{\alpha=1}^{\Delta N} \hat{c}_{n_\alpha, \mathbf{k}_\alpha, -\sigma}^{\dagger} |\Psi_g^{II}(4N_c)\rangle \qquad n_\alpha: \ s = 1, 2, 3$$

plane wave-type states due to $-\sigma$ electrons

 $\rightarrow \Delta N$ - σ electrons itinerant

Solution III: Exact ground states for general magnetic flux

Solution III: Exact ground states for general magnetic flux

Conclusion

Diamond Hubbard chain has remarkably complex properties
Switch between different ground states by variation of B, ε, n

2. Exact many-electron ground states on triangle Hubbard chains

2 sites per cell → 2 bands $N_c = \#$ cells N = # electrons $n = \frac{N}{2N_c}$ electron density

$$\hat{H} = \hat{H}_0 + \hat{H}_U$$

Solution I:

$$U_0, U_1 > 0$$

n<1/2 : ferromagnetic clusters

n=1/2 : fully saturated ferromagnet

Mielke, Tasaki (1993) Derzho, Honecker, Richter (2007)

2 sites per cell \rightarrow 2 bands $N_c = \#$ cells N = # electrons $n = \frac{N}{2N_c}$ electron density

$$\hat{H} = \hat{H}_0 + \hat{H}_U$$

Solution III:

$$U_0 = 0, \ U_1 > 0$$

n=1/2 : fully saturated ferromagnet

1D periodic Anderson model

1D periodic Anderson model

2 sites per cell \rightarrow 2 bands $N_c = \#$ cells N = # electrons $n = \frac{N}{2N_c}$ electron density

Application of the 1D periodic Anderson model to CeRh₃B₂

CeRh₃B₂ is interesting because:

- RKKY interaction cannot explain ferromagnetism
- Small f- moment 0.45 μ_B (free Ce^{3+} ion: 2.14 $\mu_B)$
- Highest T_c (=120 K) among known Ce compounds with non-magnetic elements

Application of the 1D periodic Anderson model to CeRh₃B₂

Mechanism for f-electron ferromagnetism in CeRh₃B₂?

Non-interacting magnetic state
$$|\Phi\rangle = \prod_{\sigma} \prod_{k=1}^{N_{\sigma}-L} a_{k\sigma}^{\dagger} \prod_{k=1}^{L} b_{k\sigma}^{\dagger} |0\rangle$$

Variational wave function
$$|\Psi
angle=P|\Phi
angle$$

Gutzwiller projector
$$P = \prod_{i} (1 - \tilde{\eta} n_{i\uparrow}^{f} n_{i\downarrow}^{f})$$

Evaluations by variational Monte Carlo (VMC) Kono, Kuramoto (JPSJ, 2006)

Magnetic moments

Experiment:
$$m_f = 0.45$$
Galatanu *et al.* (2003)VMC $t = 0.34 \text{ eV}, V = 0.24 \text{ eV}, E_f = -0.714 \text{ eV}, U = 7 \text{ eV}, n = 1.1$ $m_f = 0.94$ Kono, Kuramoto (JPSJ, 2006)

Exact ground state
$$\frac{V^2}{t} = E_f + 2t, t > 0, E_f > -2t$$
 $t = 0.34 \text{ eV}, V = 0.23 \text{ eV}, E_f = -0.52 \text{ eV}, U > 0$ arbitrary, $n = 1.0$ $m_f = 0.68$ Gulacsi, Kampf, Vollhardt (unpublished)

III. Exact many-electron ground states on pentagon Hubbard chains

Search for ferromagnetism in systems with non-magnetic elements

Candidate: Flat-band ferromagnetism in organic polymers

Suwa, Arita, Kuroki, Aoki (2003) Arita, Suwa, Kuroki, Aoki (2002, 2003)

Construction of lowest flat band by tuning of "gate potentials ϵ " only

Gulacsi, Kampf, Vollhardt (unpublished)

$$t_h < 0$$
; arbitrary $t, t', \varepsilon_1, \varepsilon_2$
 $U_1, U_2 > 0$
 $U_0 = U_0(t, t', t_h, \varepsilon_0, \varepsilon_1, \varepsilon_2, U_1, U_2)$
 \rightarrow upper bound for ε_0

$$\hat{H}=\hat{H}_{0}+\hat{H}_{U}$$

Ground state II:

n<7/4 : ferromagnetic clusters

n=7/4 : non-saturated ferromagnet

Construction of a flat band by tuning the interaction U_0

Extension to more complicated structures possible

Conclusion 1: Strategy for the construction of exact many-electron ground states

Step 1: Cast many-electron Hamiltonian into positive semidefinite form

Step 2: Construct many-electron ground state

$$\hat{P}_{n} |\Psi\rangle = 0 \Rightarrow \hat{H} |\Psi\rangle = E_{g} |\Psi\rangle$$
ground state
ground-state energy

- Applicable to any model with sufficiently many microscopic parameters
- Works in any dimension
- No "integrability" required

Conclusion 2: Exact many-electron ground states on Hubbard chains

- Hubbard chains have remarkably complex properties e.g., square Hubbard chain:
 - Lowest flat-band ferromagnetism (general property)
 - Correlated half-metal behavior
 - Metal-insulator transitions
- Tune between different ground states by varying B, ε , n, U, t
 - \rightarrow Design of new switches