Recent Works in My Lab.

- Magnetism
 - Chiral magnetism
 - Low dimensional magnetism in TiOBr & VOCI
 - Magnetism in (La,Ca)₂CoO₄
- Superconductivity
 - Two gap superconductivity in Y_2C_3
 - Type-I superconductivity in B-doped SiC
 - Interlayer phonon driven superconductivity in CaAlSi

YKIS2007 "Interaction and Nanostructural Effects in Low-Dimensional Systems"

Spin, charge and orbital orders in two-dimensional $La_{2-x}Ca_xCoO_4$

Department of Physics and Mathematics, Aoyama Gakuin University

Jun Akimitsu

DC3 Kazumasa Horigane

Outline

Introduction

Summary of the previous works in $La_{2-x}Sr_xCoO_4$

Purpose of the present study in $La_{2-x}Ca_{x}CoO_{4}$

Results and discussion

Single crystal growth and structure analysis

Resonant X-ray scattering

Neutron diffraction measurements

Ultrasound measurements

•Summary

Collaborators

Crystal growth of $La_{2-x}Sr_xCoO_4$ and their physical properties <u>Kazumasa Horigane</u>, Toru Uchida (Aoyama-Gakuin Univ.)

Crystal structure analysis

Yukio Noda (Tohoku University), Yusuke Kousaka (Aoyama-Gakuin Univ.)

Resonant X-ray scattering (Tohoku University)

Youichi Murakami, Hironori Nakao, Tetsuya Murata

Neutron diffraction (Tohoku University)

Kazuyoshi Yamada, Haruhiro Hiraka

Ultrasound measurements (University of Electro-Communications)

Masaru Suzuki, Toshiaki Kobayashi, Kohji Abe, Kichizo Asai

 $La_{2-x}Sr_{x}MO_{4}$ system (M: transition metals)

$$La_{2-x}Sr_{x}CuO_{4}\cdots d$$
 –wave superconductor
 $Sr_{2}RuO_{4}\cdots p$ -wave superconductor
 $La_{2-x}Sr_{x}NiO_{4}\cdots$ charge stripe ordering
 $La_{2-x}Sr_{x}MnO_{4}\cdots$ charge and orbital ordering

 $La_{2-x}Sr_xCoO_4$ system is expected to show the novel physical properties

Spin state in $La_{2-x}Sr_{x}CoO_{4}$

Phys. Rev. B 55, R14 725 (1997)

Spin state in La_{2-x}Sr_xCoO₄

Charge ordering in La_{2-x}Sr_xCoO₄

Checkerboard type charge ordering model

Charge ordering patterns were determined from **diffuse peaks**.

Checkerboard type charge ordering has not been determined by crystal structural analysis because the diffuse reflections are too weak

Purpose in the present study

Purpose

- 1. Determine the charge ordered state and its crystal structure
- 2. Clarify the Intermediate spin state and its origin
- 3. Determine the magnetic structure and its hole-doping dependence

$La_{2-x}Ca_{x}CoO_{4}$ system is best candidate to understand the upper purpose.

1. Spin state transition by controlling the filling in La_{2-x}Ca_xCoO₄

 $T_{\rm N} \sim 50 {\rm K}$

Spin state transition from Co³⁺(HS) to Co³⁺(IS) with increasing Ca concentration

§1 Single crystal growth and crystal structure analysis in La_{2-x}Ca_xCoO₄

Crystal growth

Single crystal sample Laue photograph [001] direction

Length: 60mm

Diameter: 5mm

Space group in $La_{1.5}Ca_{0.5}CoO_4$ has been determined to be *Cmm2(A2mm)* from the convergent electron diffraction.

Analysis results

Structural parameters of La_{1.5}Ca_{0.5}CoO₄

	x	У	Ζ	U
Co(1)	0	0	0	0.000(3)
Co(2)	0.499(5)	0.5	0	0.000(3)
O(1)	0.247(2)	0.247(2)	0	0.001(1)
O(2)	0.757(2)	0.753(2)	0	0.010(2)
O(3)	0.015(2)	0	0.1654(4)	0.007(1)
O(4)	0.507(2)	0.5	0.1738(5)	0.011(1)
La,Ca(1)	0	0	0.3614(3)	0.002(1)
La,Ca(2)	0	0.5	0.3622(3)	0.001(1)

A2mm (r =0.50), R=6.62, Rw=7.28 a=5.416(4), b=5.404(2), c=12.313(6) α=90, β=90, γ=90

Two Co site, Co (1) and Co(2), are existed.

Checkerboard type arrangement

Presumption of Co(1), Co(2) site valences

We estimate the charge order pattern and valences by **RXS technique**.

Checkerboard model in La_{1.5}Ca_{0.5}CoO₄

$$f_1 = \frac{1 + \delta_c}{2} f(Co^{3+}) + \frac{1 - \delta_c}{2} f(Co^{2+})$$

$$f_2 = \frac{1 - \delta_c}{2} f(Co^{3+}) + \frac{1 + \delta_c}{2} f(Co^{2+})$$

δc: order parameter of charge ordering $\delta c=1$: full charge disproprotration (Co²⁺/Co³⁺) $\delta c=0$: no charge ordering (Co^{2.5+}/Co^{2.5+})

The structure factor F(h,0,0) (h:odd)

$$F(h,0,0) \propto f_1 - f_2 + C$$

= $\delta_c [f(Co^{3+}) - f(Co^{2+})] + C$

C: lattice distortion due to the charge ordering

(1,0,0), (3,0,0) resonant scattering should be observed in a checkerboard charge ordering

Determination of $\delta_{\rm c}$ and checkerboard model

Comparison between Model A: Co(1)- Co^{3+} , Co(2)- Co^{2+} and **Model B**: Co(1)- Co^{2+} , Co(2)- Co^{3+}

Full charge disproportionation ($\delta_c = 1.00(15)$) is realized in the model A

Summary

• The crystal structure of $La_{1.5}Ca_{0.5}CoO_4$ was determined to be the *A2mm* space group with **twin structure**.

•We found the (3,0,0), (1,0,0) reflections, indicating that the full charge disproportionation was realized in this system

Spin and charge orders and their hole doping dependence in La_{2-x}Ca_xCoO₄ (0.3<x<0.8) by using neutron diffraction

Experimental details

Sample: $La_{2-x}Ca_xCoO_4$ (0.3<x<0.8) single crystal (4mm φ ×40.0mm)

Spectrometer:

TOPAN(6G) monochromator: PG(002)

 E_i =30.5meV, collimation: B(50')-30'-S-60'-B(180')

AKANE(T1-2) monochoromator: Ge(3,1,1)

 E_i =19.7meV, collimation: g(20')-open-S-60'-B(180')

Scattering plane: (H,0,L), (H,H,L)

Unit cell: the charge ordered unit cell $(a \sim b \sim 5.418 \text{ Å}, c \sim 12.469 \text{ Å} (x=0.5))$

Charge ordering (CO) and spin ordering (SO) in La_{1.5}Ca_{0.5}CoO₄

By substituting Ca, strong nuclear scatterings due to CO were observed

Charge ordering (CO) and spin ordering (SO) in La_{1.5}Ca_{0.5}CoO₄

By substituting Ca, strong nuclear scatterings due to CO were observed

Charge ordering in La_{1.5}Ca_{0.5}CoO₄

Structural scatterings due to CO were observed at L=integer positions.

Charge ordering in La_{1.5}Ca_{0.5}CoO₄

Structural scatterings due to CO were observed at L=integer positions.

Charge ordering in La_{1.5}Ca_{0.5}CoO₄

Structural scatterings due to CO were observed at L=integer positions.

Charge and magnetic correlation lengths in La_{1.5}Ca_{0.5}CoO₄

CO correlation lengths of Ca system are five times longer than that of Sr system

Magnetic scattering along the L direction in La_{1.5}Ca_{0.5}CoO₄

We observed three types of magnetic peaks in half-doped cobalt system

Magnetic scattering along the L direction in La_{1.5}Ca_{0.5}CoO₄

We observed three types of magnetic peaks in half-doped cobalt system

Summary : magnetic and charge orderings in La_{1.5}Ca_{0.5}CoO₄

The elastic scattering in the (H0L) reciprocal plane of $La_{1.5}Ca_{0.5}CoO_4$

Correlation lengths in half-doped materials

Materials	ξ (CO)_ab	ξ (CO)_c	l=half-i ξ (SO)_ab	nteger ξ (SO)_c	l= ξ (SO)_	-integer abξ (SO)_c
La _{1.5} Ca _{0.5} CoO ₄	115(12)	59(2)	195(4)	22(1)	98(8)	22(1)
$La_{0.5}Sr_{1.5}MnO_4$	>300	~50	>300	~33		
$La_{1.5}Sr_{0.5}CoO_4$	23	8.3(6)			79(3)	10.7(3)
La _{1.5} Sr _{0.5} NiO ₄	30(10)	2(1)			~120	~13

The origin of the two types magnetic reflections

Magnetic peaks depend on the stacking patterns along the *c* axis.

Phys. Rev. B **71**, 024435 (2005)

Magnetic scattering origin in $La_{1.5}Ca_{0.5}CoO_4$

AFM along stacking vector **FM** along stacking vector

Domain B

• $Co^{2+} \odot Co^{3+} \implies$ Stacking vector [0, 1/2, 1/2]

Freedom of charge arrangement 2 Freedom of spin arrangement 2

→ 4 magnetic domains are expected

Domain A $(h, 0, L)_{ortho}$

- A- I q=(0, 1/2, 1/2) \longrightarrow ×
- A- $IIq=(1/2,0,0) \longrightarrow 0$

Domain B $(0, k, L)_{ortho}$

- B-I q=(0, 1/2, 1/2)**→** 0
- B-II q=(1/2,0,0) → ×

Magnetic scatterings can be explained by considering the two magnetic domains.

peak position	I_{cal}	$I_{ m obs}$	$r \cdot I_{cal}$	$(0.5-r) I_{cal}$
(0.5, 0, 1)	268.3	58.5		49.6
(1.5, 0, 1)	188.0	35.6		34.8
(2.5, 0, 1)	104.1	15.6		19.3
(3.5, 0, 1)	48.6	6.4		9.0
(0.5, 0, 2.5)	341.5	93.6	107.6	
(1.5, 0, 2.5)	196.3	47.5	61.8	
(2.5, 0, 2.5)	100.7	35.5	31.7	
(0.5, 0, 3)	323.3	62.1		59.8
(1.5, 0, 3)	192.3	32.3		35.6
(2.5, 0, 3)	97.8	18.3		18.1
(0.5, 0, 4)	273.3	44.9		50.6
(2.5, 0, 4)	173.6	38.2		32.1
(3.5, 0, 4)	72.0	6.2		13.3

 $\mu_{Co}^{2+}=2.86(19), \Phi_{S}=48^{\circ}, r(type-I)=0.315$

 Φ s: angle between the spins and the (h,0,0) axis.

The observed magnetic reflections represent as

$$\begin{split} I_{obs} = r_{B-I} \rtimes I_{cal}(type-I) + r_{A-\mathrm{II}} \rtimes I_{cal}(type-\mathrm{II}) \\ r(A-\mathrm{II}) = 0.5 - r(B-I) \end{split}$$

- We estimated the ratio of *r*(type-I)=0.315
 type-I stacking is majority
- •Magnetic moment $\mu_{Co2+}=2.86(19)\mu_B$
 - \bigcirc Co²⁺(HS) is realized in *x*=0.5 system.

We qualitatively determine the magnetic structure of Co²⁺ spins

The presence of $(\frac{1}{4}, \frac{1}{4}, \frac{1}{2})$ indicates that the magnetic unit cell has dimensions $4a \times 4a \times 2c$ relative to the CO unit cell.

The presence of $(\frac{1}{4}, \frac{1}{4}, \frac{1}{2})$ indicates that the magnetic unit cell has dimensions $4a \times 4a \times 2c$ relative to the CO unit cell.

The elastic scattering in the (HHL) reciprocal plane of $La_{1.5}Ca_{0.5}CoO_4$

Two types of magnetic scatterings were observed.

- 1. magnetic peaks at L=half-integer, ξab=93(8)Å
- 2. magnetic peaks at L=integer , $\xi ab=74(4)$ Å

We should take stacking pattern into account

The elastic scattering in the (HHL) reciprocal plane of $La_{1.5}Ca_{0.5}CoO_4$

Two types of magnetic scatterings were observed.

- 1. magnetic peaks at L=half-integer, ξab=93(8)Å
- 2. magnetic peaks at L=integer , $\xi ab=74(4)$ Å

We should take stacking pattern into account

The elastic scattering in the (HHL) reciprocal plane of $La_{1.5}Ca_{0.5}CoO_4$

Two types of magnetic scatterings were observed.

- 1. magnetic peaks at L=half-integer, ξab=93(8)Å
- 2. magnetic peaks at L=integer , $\xi ab=74(4)$ Å

We should take stacking pattern into account
Magnetic scatterings due to Co³⁺ spins

Magnetic unit cell has dimensions $4a \times 4a \times 2c$

In-plane correlation lengths for L=half-integer and integer are 93(8)Å, 74(4)Å, respectively.

Spin structure of Co^{2+}

→ Magnetic unit cell has dimensions 2a×a×2c

These of correlation lengths are (195(4)
 Å, 98(8) Å).

We concluded that the new magnetic peaks comes from the **Co³⁺ spin supper-lattice peaks**

Co³⁺ spin structure model

1. magnetic unit cell has dimensions $4a \times 4a \times 2c$

We assumed that the alignment of spin moments is $\uparrow\uparrow\downarrow\downarrow$ type in CoO₂ plane.

Two types of stacking pattern should be taken into account.
 Two types of spin sackings are considered, and we assumed the magnetic volume fraction to be *r*=0.315.

peak position	I_{cal}	$I_{\rm obs}$	$r \mathbf{I}_{cal} (0.5-r) \mathbf{I}_{cal}$
(0.75, 0.75, 0.5)	67.7	22.8	20.3
(1.25, 1.25, 0.5)	46.0	10.3	13.8
(0.75, 0.75, 1)	66.1	13.1	15.4
(1.75, 1.75, 1)	42.9	9.3	5.0
(0.75, 0.75, 1.5)	63.0	15.5	18.8
(1.25, 1.25, 1.5)	42.9	9.9	12.8
(0.75, 0.75, 2)	59.3	9.0	11.3
(1.25, 1.25, 2)	26.2	4.9	7.7

 $\mu_{Co}^{3+}=3.64(23)\mu_{B}, \Phi_{s}=90^{\circ}, r \text{ (type- I)}=0.315$ $\Phi_{s:}$ angle between the spins and the (h,h,0) axis. • magnetic moment $\mu_{Co3+}=3.64(23)\mu_B$

 \rightarrow Co³⁺(HS) is realized in x=0.5 system.

Hole-doping dependence of charge ordering

Hole-doping dependence of magnetic ordering

Lower doping region (x<0.5)

Type-I (L=half-integer) reflection arises below *x*=0.5 together with the **broad diffuse scattering**

Higher doping region (x>0.5)

Type-II (L=integer) reflections are observed with a **flat background** in the high doping range of x>0.5.

Dramatically changed by Ca concentration

Magnetic correlation lengths in La_{2-x}Ca_xCoO₄

Magnetic domains vs. Ca concentrations

Why type-I and type-II spin domains are clearly separated at Ca-concentration x=0.5?

What is essential for magnetic domains in this system? Ca-concentration or Co-valence

The excess oxygen system $La_{1.85}Ca_{0.15}CoO_{4.17}$, of which cobalt valence is about $Co^{2.5+}$, was examined.

Only type-I stacking domain peaks were observed in $La_{1.85}Ca_{0.15}CoO_{4.17}$.

The Ca concentration is essential for the magnetic domains.

Hole-doping dependence of Co³⁺ spin magnetic ordering

Summary - charge and magnetic structure at x=0.5 -

•Long rang charge ordering peaks were observed in Ca system, which can be explained by the A site ions.

• Magnetic structure of Co²⁺ spin has been determined .

• The magnitude μ of the Co²⁺ moment was 2.86(19) μ_B to be Co²⁺(HS).

• Magnetic structure of Co^{3+} spins has been determined at $q=(\frac{1}{4}, \frac{1}{4}, \frac{1}{2} \text{ or } (1))$.

• The magnitude μ of the Co³⁺ moment was 3.64(23) μ_B to be HS state.

Summary -hole-doping dependence-

•We observed robust commensurate charge ordered peaks in a wide doping range.

• Magnetic scattering pattern are drastically changed at *x*=0.5.

•From magnetic peaks for $La_{1.85}Ca_{0.15}CoO_{4.17}$, magnetic domains are changed by Ca substitutions.

Charge Order

-O-out-of-plan

120

100

0

0.3

0.4

0.5

0.6

Ca concentration x

0.7

0.8

§3 Ultrasound measurement in La_{2-x}Ca_xCoO₄ (0.4<x<0.7)

Sound velocities in La_{1.5}Ca_{0.5}CoO₄

We observed anomalies near $T_{\rm N}(\sim 50 {\rm K})$

We indexed *k* and *p* vector by a CO unit cell

Softening:
$$\frac{C_{11} - C_{12} + 2C_{66}}{2}, C_{66}$$

Hardening:
$$\frac{C_{11} - C_{12}}{2}$$

Ca dependence of sound velocity for C₆₆

(1) The anomalous softenings were observed in the whole doping range.

(2) Starting temperature of softening agree well with $T_{\rm N}$

Elastic constant C₆₆ and attenuation coefficient α_{c66}

- 1. The large softening (20%) below $T_{\rm N}$ shows the stepwise behavior.
- 2. The temperature dependence of α below T_N shows strange behavior.

Elastic constant C₆₆ and attenuation coefficient α_{c66}

Temperature dependence of $-\Delta C_{66}$ is similar to the that of magnetic scattering intensity.

The strain relevant to C_{66} is strongly correlated with this magnetic ordering (q=(1/2, 0, 3/2))

Construction of Landau free energy for La_{2-x}Ca_xCoO₄

Construction of Landau free energy for La_{2-x}Ca_xCoO₄

Construction of Landau free energy for La_{2-x}Ca_xCoO₄

Landau free energy for La_{2-x}Ca_xCoO₄

The free energy F

up to the fourth order of the order parameter was expressed as

$$F = F_0 + \frac{\alpha}{2} (Q_{10}^2 + Q_{20}^2) + \frac{\beta}{4} (Q_{10}^4 + Q_{20}^4) + \frac{\gamma}{2} (Q_{10}^2 Q_{20}^2) + \zeta_1 u_1 (Q_{10} Q_{20}) + \frac{1}{2} \zeta_2 u_2 (Q_{10}^2 - Q_{20}^2) + \frac{1}{2} C_1^{(para)} u_1^2 + \frac{1}{2} C_2^{(para)} u_2^2$$

Landau free energy for La_{2-x}Ca_xCoO₄

up to the fourth order of the order parameter was expressed as

$$F = F_0 + \frac{\alpha}{2} (Q_{10}^2 + Q_{20}^2) + \frac{\beta}{4} (Q_{10}^4 + Q_{20}^4) + \frac{\gamma}{2} (Q_{10}^2 Q_{20}^2) + \frac{\zeta_1 u_1 (Q_{10} Q_{20}) + \frac{1}{2} \zeta_2 u_2 (Q_{10}^2 - Q_{20}^2) + \frac{1}{2} C_1^{(para)} u_1^2 + \frac{1}{2} C_2^{(para)} u_2^2$$

Landau free energy for La_{2-x}Ca_xCoO₄

up to the fourth order of the order parameter was expressed as

$$F = F_{0} + \frac{\alpha}{2} (Q_{10}^{2} + Q_{20}^{2}) + \frac{\beta}{4} (Q_{10}^{4} + Q_{20}^{4}) + \frac{\gamma}{2} (Q_{10}^{2} Q_{20}^{2}) + \frac{\zeta_{1} u_{1} (Q_{10} Q_{20}) + \frac{1}{2} \zeta_{2} u_{2} (Q_{10}^{2} - Q_{20}^{2}) + \frac{1}{2} C_{1}^{(para)} u_{1}^{2} + \frac{1}{2} C_{2}^{(para)} u_{2}^{2} + \frac{1}{2} C_{1}^{(para)} u_{1}^{2} + \frac{1}{2} C_{2}^{(para)} u_{2}^{2} Improper coupling terms of (C_{11}-C_{12})/2 and C_{66} u_{1}, u_{2}: strains corresponds to$$

 $(C_{11}-C_{12})/2$ and C_{66}

Landau free energy for La_{2-x}Ca_xCoO₄

up to the fourth order of the order parameter was expressed as

 $(C_{11}-C_{12})/2$ and C_{66}

Landau free energy for La_{2-x}Ca_xCoO₄

up to the fourth order of the order parameter was expressed as

$$F = F_{0} + \frac{\alpha}{2} (Q_{10}^{2} + Q_{20}^{2}) + \frac{\beta}{4} (Q_{10}^{4} + Q_{20}^{4}) + \frac{\gamma}{2} (Q_{10}^{2} Q_{20}^{2}) + \frac{\zeta_{1} u_{1}(Q_{10} Q_{20}) + \frac{1}{2} \zeta_{2} u_{2}(Q_{10}^{2} - Q_{20}^{2}) + \frac{1}{2} C_{1}^{(para)} u_{1}^{2} + \frac{1}{2} C_{2}^{(para)} u_{2}^{2} + \frac{1}{2} C_{2}^{(para)} u_{2}$$

The minimization of free energy

Three sets of the stable solution are obtained

Case(I) $Q_{10} = Q_{20} = 0$ (paramagnetic phase)

Case(II) $Q_{10} \neq 0, Q_{20} = 0$ or $Q_{10} = 0, Q_{20} \neq 0$

"transverse-like" spin modulation along the y or x direction

Case(III)
$$Q_{10} = Q_{20} \neq 0$$
 or $Q_{10} = -Q_{20} \neq 0$

The modulation along the [010] or [100] direction

As compared with the spin configuration, **Case(II)** is realized.

Anomalies of C₆₆

In case(II), the elastic constant C₆₆ was obtained as

 C_{66} is constant in the paramagnetic phase, and decreases stepwise in the ordered phase.

The stepwise softening of C_{66} related with magnetic ordering can be explained based on Landau theory.

The origin of order parameter ①

Magnetic striction (?)

- 1. Magnetic ordering may lead to elastic anomalies which is proportional to the square of the magnetic moment.
- 2. The softening starts around the magnetic ordering temperature.

However

- 1. Magnetic striction is not large enough to explain the observed giant softening.
- 2. Why only the C_{66} mode appears in the magnetic striction?
- 3. Improper coupling has a hidden order parameter, suggesting **spin modulation is unsuitable.**

The origin of order parameter 2

Orbital ordering (?)

- 1. The **orbital ordering modulation** along [110] and [-110] can be also regarded as **order parameter.**
- 2. C_{66} belongs to B_{1g} irreducible representation symmetry which correspond to the **JT-mode**.

3. The attenuation coefficient behavior suggests that there is the **presence of the fluctuation** in zig-zag orbital ordering.

Summary on ultrasound velocity in (La,Ca)₂CoO₄

• A giant softening of C_{66} was observed below T_N in all concentrations.

• The novel softening of C_{66} was discussed by Landau theory and this theory explained well the stepwise behavior.

 I would like to ask overall understanding between the C₆₆ softening and magnetic structure in (La,Ca)₂CoO₄. Superconductivity in B-doped SiC -Collaborators-

Z.-A. Ren, J. Kato, T. Muranaka

- AC susceptibility
 - M. Kriener, Y. Maeno (Kyoto Univ.)

JPSJ Vol.76 No.10 (2007) 103710

Thanks to the editors for choosing this paper as "Paper of Editors' Choice".

Searching for new superconductivity in a wide gap semiconductor with a diamond lattice structure

Crystal structure of 3C-SiC

a = 0.436 nm SG: F-43m Band Gap: 2.23 eV

- We try to dope B atom for carrier doping.
- But.... many polytypes exist in SiC.
 - □ β-SiC
 - <u>3C-SiC</u> (diamond-type structure)
 - α-SiC
 - nH-SiC(2H-SiC, 4H-SiC, <u>6H-SiC</u> etc.)
 - nR-SiC(15R-SiC, 21R-SiC etc.)

Temperature dependence of resistivity

Superconductivity was observed at T_c=1.4 K

Aoyama-Gakuin

Temperature dependence of AC susceptibility

- We observed the in-field hysteresis and the absence of a hysteresis in zero field.
 - Strong evidence for type-I superconductivity.

Gakuin

H-T phase diagram from AC susceptibility

We determined H_{sc}(0) to be (83±5) Oe
 □ GL parameter κ ≤ 0.34 (type-I)

Aoyama-Gakuin

Comparison with literature

	SiC-1	SiC-2	C:B (Sidorov <i>et al.</i>)	Si:B (Bustarret et al.)
<i>n</i> (cm ⁻³)	$1.91 \cdot 10^{21}$	$1.06 \cdot 10^{21}$	$1.80 \cdot 10^{21}$	$2.80 \cdot 10^{21}$
γ (mJ/molK ²)	0.29	0.22	0.113	
β (mJ/molK ⁴)	0.019	0.017	0.0007	
$\Theta_{\rm D}({\rm K})$	590	610	1440	
$ ho_0 (\mu \Omega cm)$	60	1030	2500	130
RRR	10	5	0.9	1.23
$T_{\rm c}(H=0)({\rm K})$	1.45	1.42	4.5	0.35
$\Delta C/\gamma T_c$	0.96	0.80	0.5	
<i>ξ</i> (0) (nm)	360	330	9	20
$\lambda(0)$ (nm)	130	170	163	
κ _{GL} (0)	0.36	0.52	18	

- These materials have same crystal structure and carrier density.
- But, only SiC:B is type-I superconductor because of the very long coherence length.

Superconductivity in B-doped SiC

- Stacking of C-layer and Si-layer and its direction are different.
 - □ 3C-SiC; along <111>
 - 6H-SiC; along <001>

Band dispersion of 3C-SiC & 6H-SiC

- Indirect gap: ~2eV
- Top of valence bands are located almost $E_{\rm F}$ in both types.
- Almost same Debye temperature are estimated form theoretical calculation and experiment in each type.
 - Probably, both phases reveal superconductivity at almost same temperature.

Gakuin

Aovama-

Superconductivity in Y_2C_3

-Collaborators-

- S. Akutagawa and H. Kitano
- Rietveld analysis
 - K. Osaka, K. Kato and M. Takata (SPring-8)
- Microwave measurement
 - T. Ohashi and A. Maeda (Univ. of Tokyo)
- NMR
 - A. Harada, Y. Miyamichi, H. Mukuda, Y. Kitaoka (Osaka Univ.)

Susceptibility & Resistivity of Y_2C_3

We successfully synthesized high quality Y_2C_3 samples.

 $T_{\rm c}$ is controllable by synthesis condition.

Rietveld analysis of Y_2C_3 - high- T_c phase (18 K)

and C atoms form dimers.

Comparison between low- T_c and high- T_c material in Y_2C_3

High-*T*_c material our work : 8.18~8.23Å

Low-*T*_c material Krupka's work : 8.214~8.251Å

The lattice constant, a, of high- T_c material is shorter than that of low- T_c material.

Refined Structure Parameters

High-T_c material (our work) d_{c-c} : 1.3134 Å d_{Y-C} : 2.4876 Å d_{Y-Y} : 3.5451 Å Low-*T*_c material (V.I. Novokshonov et al.) d_{c-c} : 1.5298 Å d_{Y-C} : 2.556 Å d_{Y-Y} : 3.5652 Å

shorter than that of low-T_e material.

Macroscopic parameters

 T_{c} depends on γ .

 $2\Delta_0/k_{\rm B}T_{\rm c}$ increases with increasing $T_{\rm c}$.

Various parameters of Y_2C_3 Comparison with various T_c phases

<i>Т</i> _с (К)	11.6	13.9	15.2
γ (mJ/mol•K²)	4.7	6.0	6.3
$ heta_{D}$ (K)	540	530	530
$\mu_0 H_{c2}(0)$ (T)	22.7	24.7	26.8
$2\Delta/k_BT_c$	3.6	3.9	4.1

Relationship between γ and T_c

¹³C NMR Knight shift : singlet or triplet?

A. Harada et al., J. Phys. Soc. Jpn. 76(2) (2007) 023704/1-4.

Aoyama-Gakuin

b 5

¹³C NMR $1/T_1$: Two-gap superconductor ?

$T_1T \propto 1/N(E)$

We observed <u>two</u> components in 1/T dependence.

Two isotropic gaps exit in Y_2C_3 .

Large gap: $2\Delta_{\alpha}/K_{B}T_{c} = 5$

Small gap: $2\Delta_{\beta}/K_{B}T_{c} = 2$

Dotted line shows $\sim T^2$ (line node).

The inset shows a simple exponential

recovery curve of nuclear

magnetization

A. Harada et al., J. Phys. Soc. Jpn. 76(2) (2007) 023704/1-4.

Superconducting state of $La_2C_3 \& Y_2C_3$ probed by μ SR

- S. Kuroiwa, Y. Saura (Aoyama-Gakuin Univ.)
- A. Koda, R. Kadono (KEK)

Sesquicarbide Ln_2C_3 (Ln = La, Y)

 La_2C_3 $T_{c} \sim 11 \text{ K}$ $H_{c2}(0) \sim 167(3) \text{ kOe}$ $\xi_{GI}(0) \sim 44(1) A$ Y_2C_3 $T_{\rm c} \sim 15 \, {\rm K}$ $H_{c2}(0) \sim 256(7) \text{ kOe}$

 $\xi_{GL}(0) \sim 36(1) A$

$$\frac{\text{Red curves}: \text{Two-gap model}}{\sigma(T) = w\delta\sigma(\Delta_1, T) + (1-w)\delta\sigma(\Delta_2, T)}$$

$$\delta\sigma(\Delta, T) = 2\sigma(0)/k_{\text{B}}T\int f(\varepsilon, T) [1-f(\varepsilon, T)]d\varepsilon$$
$$f(\varepsilon, T) = (1+\exp(\varepsilon^2+\Delta(T)^2)^{1/2}/k_{\text{B}}T)^{-1}$$

w : ratio between two gaps **k**_B: Boltzmann constant **f**(ε ,**T**) : Fermi distribution function Δ (**T**) : BCS gap energy

Green dashed curve : BCS weak coupling

Parameter	La_2C_3	Y ₂ C		
a (A)	8.795(1)	8.238(1)		
T _{c-onset} (K)	11.1	15.3		
<i>H</i> _{c2} (0) (kOe)	167(3)	256(7)		
ξ _{GL} (A)	44(1)	36(1)		
	Two-gap analysis			
$H(k \cap \alpha)$	2.5	5.0		
$\sigma(0)$ (up-1)	0.53(3)	0.34(3)		
$O(0) (\mu S^{-1})$	2990(30)	3730(160)		
λ(0) (A)	0.39(2)	0.86(3)		
W	2.6(1)	3.2(2)		
$\Delta_1(0)$ (meV)	0.5(1)	0.8(3)		
$\Delta_2(0)$ (meV)	5.4(3)	5.0(4)		
$2\Delta_1/k_{\rm B}T_{\rm c}$	1.0(3)	1.2(5)	Linip	Aoyama- <u>G</u> akuin

- New type-I superconductivity in B-doped SiC.
- Two gap superconductivity in Y_2C_3 (from NMR).
- First observation of phonon dispersion by IXS in CaAlSi.
- H-T phase diagram has been made for single crystalline Ag-clathrate system

