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1. Pomeranchuk instability

Stability criterion for isotropic 3D Fermi liquids (Pomeranchuk 1958):

Landau’s excitation energy functional

δE[δn] =
∑

kσ

εk δnkσ +
1

2V

∑

kk′

∑

σσ′

fσσ
′

kk′ δnkσδnk′σ′

positive for any choice of δnkσ only if all Landau parameters satisfy

F cl > −(2l + 1) and F sl > −(2l + 1) for all l = 0, 1, 2, . . .

Otherwise negative excitation energy for suitable choice of δnkσ

⇒ instability



2D Hubbard and tJ model:

Forward scattering interaction

in charge channel f ckFk′
F

has attractive d-wave component
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Furthermore: small Fermi velocity vkF near saddle points of εk

⇒ d-wave Fermi surface deformations easy (low energy cost)

(Halboth, wm 2000; Yamase, Kohno 2000)



Effective interaction f ckFk′
F
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Deformation of Fermi surface
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Spontaneous breaking of tetragonal symmetry (”Pomeranchuk instability”)

for sufficiently strong attractive d-wave component

Order parameter nd =
∑

k dk〈nk〉 where dk = cos kx − cos ky

Realization of ”nematic” electron liquid (→ Kivelson et al. 1998)



Nematic electron liquid with d-wave Fermi surface deformation

possibly realized in Sr3Ru2O7 at high magnetic fields

Experiment: Grigera et al. 2004; Borzi et al. 2007

Theory: Fradkin et al. 2007; Yamase + Katanin 2007



Phenomenological 2D lattice model:

H = Hkin + 1
2V

∑

k,k′,q fkk′(q)nk(q)nk′(−q)

where nk(q) =
∑

σ c
†
k−q/2,σ ck+q/2,σ

and only small momentum transfers q contribute (forward scattering)

Interaction with uniform repulsion and d-wave attraction:

fkk′(q) = u(q) + g(q) dk dk′

with dk = cos kx − cos ky and u(q) ≥ 0, g(q) < 0

(qualitatively as from RG)

yields Pomeranchuk instability

Mean-field theory: Yamase, Oganesyan, wm 2005



2. Soft Fermi surface and non-FL behavior

Soft Fermi surface (near Pomeranchuk instability) ⇒

• large response to anisotropic (d-wave) perturbations

• large Fermi surface fluctuations

Non-Fermi liquid behavior in quantum critical regime

wm, Rohe, Andergassen, PRL 91, 066402 (2003)

Dell’Anna, wm, PRB 73, 045127 (2006)



Origin of non-FL behavior:

Electrons see fluctuating Fermi surface

⇒ enhanced and anisotropic decay rates

0

k

kx

y

π

π

Fluctuations collective and overdamped;

not to be confused with:

• usual thermal smearing

• zero sound (propagating Fermi surface oscillation)



Dynamical effective interaction:

Γ   = +
f

+
ff

. . .

Singular part near Pomeranchuk instability for small q and small ω/|q|

Γkk′(q, ω) ∼ g(0) dk dk′

(ξ0/ξ)2 + ξ02 |q|2 − i ωu|q|

Parameters:

Velocity u > 0 (related to ImΠd)

microscopic length scale ξ0 , correlation length ξ

Temperature dependence of ξ determined by interaction

of critical fluctuations (Millis ’93);

in quantum critical regime: ξ(T ) ∝ 1√
T log T



Electron self-energy:

Leading order (RPA)

Γ

Σ  =

At quantum critical point (T = 0, ξ =∞):

ImΣ(kF , ω) =
g d2

kF

4
√

3πvkF

u1/3

ξ
4/3
0

|ω|2/3 for ω → 0

• large anisotropic imaginary part

• maximal near van Hove points,

minimal near diagonal in Brillouin zone: ”cold spots”

⇒ no quasi-particles away from Brillouin zone diagonal



Cf. non-Fermi liquid behavior in isotropic d-wave forward scattering model

by Oganesyan et al. ’01:

Isotropic decay ∝ |ω|2/3 at quantum critical point

Decay ∝ |ω|2/3 in 2D also at quantum critical point for

• phase separation (Castellani, Di Castro, Grilli ’95)

• ferromagnetism (Chubukov ’05)



EDC of spectral function A(k, ω)
at QCP

upper panel: gd2
kF

= 1
lower panel: gd2

kF
= 4

Energy scale ωckF ∝
d6

kF

v3
kF

For vkF |k− kF | < ωckF
flat renormalized dispersion

ξ̄k ∝ |k− kF |3/2
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MDC of spectral function A(k, ω)
at QCP

upper panel: gd2
kF

= 1
lower panel: gd2

kF
= 4

Lorentzian shape due to

weak momentum dependence

of Σ(k, ω) perpendicular

to Fermi surface
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ImΣ(kF , ω) in symmetric phase at T = 0 for ξ ≥ 0 (near QCP):
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ImΣ(kF , ω) ∝ ω2 log |ω| for |ω| � ωξ ∝ ξ−3

ImΣ(kF , ω) looks linear in wide energy range near and above ωξ



ImΣ(kF , ω) above quantum critical point (T > 0):
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T ξ(T ) ∝ (T/ log T )1/2 for T → 0

Classical fluctuations (Matsubara frequency = 0) dominate at ω = 0



Selfconsistency (G instead of G0 in RPA diagram)

yields only minor changes at T > 0 and none at T = 0.

At least at T = 0 results for Σ also stable against vertex corrections

(cf. fermions coupled to gauge field, in particular Altshuler et al. ’94)

Vertex corrections due to classical fluctuations at T > 0 also finite



3. Transport life-time and electrical resistivity

DC conductivity from current-current correlation (Kubo formula):

σjj′ = −e
2

π

∫

d2k

(2π)2
Λ0
j(k)|G(k, ω)|2Λj′(k, ω)

Bare current vertex Λ0(k) = vk

Interacting current vertex Λ(k, ω) from sum over particle-hole ladders

+ + + . . .Λ =

Conserving approximation corresponding to RPA self-energy

under the assumption that

order parameter fluctuations remain in equilibrium (no drag)



Again: Classical fluctuations dominate! ⇒

Formal equivalence to Born approximation for disordered systems

with long-ranged correlator Γkk(q, 0)

Integral equation for current vertex can be solved asymptotically

Λ(kF , 0) =
γkF

γtr
kF

vkF

with single-particle decay rate γkF = −ImΣ(kF , 0)

and transport decay rate

γtr
kF = −πT

∫

d2q

(2π)2
ΓkFkF (q, 0)A(kF+q, 0)

(

1−
vkF · vkF+q

v2
kF

)

ΓkFkF (q, 0) static fluctuation propagator, A(k, ω) spectral function

γtr
kF
� γkF for nearly forward scattering, huge vertex renormalization



Explicit result after q-integration: γtr
kF
∝ d2

kF
T

• linear in temperature

• cold spots on Brillouin zone diagonal

Conductivity σ =
e2

8π2

∫

dΩkF
vkF

γtr
kF

diverges due to cold spots

Adding Fermi liquid contribution due to regular interactions yields

γtr
kF

= akFT
2 + bkFd

2
kF
T

where akF and bkF are finite for all kF

⇒ resistivity ρ(T ) = σ−1(T ) ∝ T 3/2

Dell’Anna, wm, PRL 98, 136402 (2007)



Relation to DC transport in overdoped cuprates ?

• ρ(T ) ∝ T 3/2 observed in overdoped La2−xSrxCuO4

(Takagi et al. 1992)

• Measurement of k-resolved transport life time via angular magneto-

resistance oscillations in overdoped Tl2Ba2CuO6+δ yields

γtr
kF

= conventional terms + bkFd
2
kF
T

(Abdel-Jawad,...,Hussey 2006)

Several other indications for d-wave Pomeranchuk/nematic physics

in cuprates . . .



For example:

Large response to anisotropic (d-wave) perturbations

natural explanation (Yamase + wm 2006)

of relatively strong in-plane anisotropy

observed for magnetic excitations

in YBCO (Hinkov et al. 2004)

 0

 1

 2

 3

 4

 5(c) ω=0.35J

δ=0.12
T=0.01J
odd α=−0.05



Conclusions:

• Microscopic models for cuprates exhibit attraction in d-wave forward

scattering channel, favoring thus a d-wave Pomeranchuk instability

• Near Pomeranchuk instability singular forward scattering and

soft Fermi surface, leading to non-Fermi liquid behavior.

• Transport decay rate is linear in T except at cold spots on the

zone diagonal, leading to ρ(T ) ∝ T 3/2 in pure systems.


