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1. Pomeranchuk instability

Stability criterion for isotropic 3D Fermi liquids (Pomeranchuk 1958):

Landau’s excitation energy functional

SE[0n] = ecdnis + % SN £ SOy
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positive for any choice of dny, only if all Landau parameters satisfy

Ff>—20+1) and F>—(21+1) forall [=0,1,2,...

Otherwise negative excitation energy for suitable choice of dny,

= Instability



2D Hubbard and tJ model:
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! attraction
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Forward scattering interaction
! C
in charge channel kok}

has attractive d-wave component

Furthermore: small Fermi velocity vy, near saddle points of e

= d-wave Fermi surface deformations easy (low energy cost)

(Halboth, wm 2000; Yamase, Kohno 2000)



Effective interaction flka%, Deformation of Fermi surface

N

! attraction
w/

Spontaneous breaking of tetragonal symmetry (" Pomeranchuk instability” )

for sufficiently strong attractive d-wave component

Order parameter ng =), dx(nk) where dyx = cosk, — cosk,

Realization of "nematic” electron liquid (— Kivelson et al. 1998)



Nematic electron liquid with d-wave Fermi surface deformation
possibly realized in Sr3Ru>O7 at high magnetic fields
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Experiment: Grigera et al. 2004; Borzi et al. 2007
Theory: Fradkin et al. 2007; Yamase 4+ Katanin 2007



Phenomenological 2D lattice model:

H = Hyin + 517 Dk q e (a) ni(a) ne(—q)

where  nyx(q) = o Cl_q/zﬂ Ck+q/2,0

and only small momentum transfers q contribute (forward scattering)

Interaction with uniform repulsion and d-wave attraction:

fae(q) = u(q) + g(q) di dw
with dy = cosk, —cosk, and u(q) > 0, g(q) < 0

(qualitatively as from RG)
yields Pomeranchuk instability

Mean-field theory: Yamase, Oganesyan, wm 2005



2. Soft Fermi surface and non-FL behavior

Soft Fermi surface (near Pomeranchuk instability) =

e large response to anisotropic (d-wave) perturbations
e large Fermi surface fluctuations

Non-Fermi liquid behavior in quantum critical regime

wm, Rohe, Andergassen, PRL 91, 066402 (2003)
Dell’Anna, wm, PRB 73, 045127 (2006)



Origin of non-FL behavior:

Electrons see fluctuating Fermi surface

= enhanced and anisotropic decay rates

Fluctuations collective and overdamped;
not to be confused with:
e usual thermal smearing

e zero sound (propagating Fermi surface oscillation)



Dynamical effective interaction:

f f f
I = e + \/\/\/\/\/@\/\/\/\/\/ +

Singular part near Pomeranchuk instability for small q and small w/|q]

g(O) dk dkl
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Parameters:

Velocity u > 0 (related to Imll,)
microscopic length scale &, correlation length &

Temperature dependence of £ determined by interaction
of critical fluctuations (Millis '93);
1

Vv 1'logT

in quantum critical regime: £(7T)



Electron self-energy:

Leading order (RPA) /‘A’\S)
Y = >

At quantum critical point (7= 0, £ = o0):

2
4\/§7T’UkF 3/3

Im>(kp,w) for w— 0

|w

e large anisotropic imaginary part

e maximal near van Hove points,

minimal near diagonal in Brillouin zone: " cold spots”

= no quasi-particles away from Brillouin zone diagonal



Cf. non-Fermi liquid behavior in isotropic d-wave forward scattering model

by Oganesyan et al. '01:

|2/3

Isotropic decay o |w at quantum critical point

]2/3 in 2D also at quantum critical point for

Decay x |w
e phase separation (Castellani, Di Castro, Grilli '95)

e ferromagnetism  (Chubukov '05)
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MDC of spectral function A(k,w)
at QCP

upper panel: gdiF =1
lower panel: gd; =4

Lorentzian shape due to
weak momentum dependence
of X(k,w) perpendicular

to Fermi surface
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Im>(kg,w) in symmetric phase at T'= 0 for £ > 0 (near QCP):
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Im¥(kp,w) looks linear in wide energy range near and above wy



Im>(kp,w) above quantum critical point (7" > 0):

0.03

0.025

F

0.02

0.015

0.01

ImE (k) / (g d *)

0.005

gdy..

ImY(kp,0) TET) x (T/logT)Y?  for T — 0

4ka§(2)

Classical fluctuations (Matsubara frequency = 0) dominate at w = 0



Selfconsistency (G instead of G in RPA diagram)
yields only minor changes at 1" > 0 and none at 1" = 0.

At least at 1" = 0 results for X also stable against vertex corrections

(cf. fermions coupled to gauge field, in particular Altshuler et al. '94)

Vertex corrections due to classical fluctuations at 1I" > 0 also finite



3. Transport life-time and electrical resistivity

DC conductivity from current-current correlation (Kubo formula):

k)|G(k,w)]* A (k,w)

Bare current vertex Ao(k) = Vi

Interacting current vertex A(k,w) from sum over particle-hole ladders

A=<+ <3+ <§

Conserving approximation corresponding to RPA self-energy
under the assumption that

order parameter fluctuations remain in equilibrium (no drag)



Again: Classical fluctuations dominate! =

Formal equivalence to Born approximation for disordered systems

with long-ranged correlator I'y,(q, 0)

Integral equation for current vertex can be solved asymptotically

A<kF7 O) — ,Yk—F Vkr

tr
Yk

with single-particle decay rate 7k, = —Im¥(kp,0)

and transport decay rate

d? Vkp 'V
7123: — _WT/ (2732 FkaF(qa O) A(kF+q7 O) (1 — b2 e >
kp

'k .k (q,0) static fluctuation propagator, A(k,w) spectral function

’yﬁ; < vk, for nearly forward scattering, huge vertex renormalization



Explicit result after q-integration: ' oc dif T

e linear in temperature
e cold spots on Brillouin zone diagonal

62

v
Conductivity o0 =—— koF¥ diverges due to cold spots
812 gl

Adding Fermi liquid contribution due to regular interactions yields
where ay,. and by, are finite for all kg

= resistivity p(T) = o Y(T) T3/2

Dell’Anna, wm, PRL 98, 136402 (2007)



Relation to DC transport in overdoped cuprates ?

o p(T) ox T?/? observed in overdoped Lag_SrCuQOy
(Takagi et al. 1992)

e Measurement of k-resolved transport life time via angular magneto-

resistance oscillations in overdoped T1y,BasCuOg. s yields

tr _ : 2
Vi, = conventional terms + by dj T’

(Abdel-Jawad,...,Hussey 2006)

Several other indications for d-wave Pomeranchuk/nematic physics

In cuprates ...



For example:

Large response to anisotropic (d-wave) perturbations

(c) ®=0.35J

natural explanation (Yamase + wm 2006)
of relatively strong in-plane anisotropy

observed for magnetic excitations
in YBCO (Hinkov et al. 2004)




Conclusions:

e Microscopic models for cuprates exhibit attraction in d-wave forward

scattering channel, favoring thus a d-wave Pomeranchuk instability

e Near Pomeranchuk instability singular forward scattering and
soft Fermi surface, leading to non-Fermi liquid behavior.

e Transport decay rate is linear in 1" except at cold spots on the
zone diagonal, leading to p(7T") < T°/? in pure systems.



