<u>The Kondo Screening Cloud:</u> What it is and how to observe it in Quantum Dots

Collaborators: Erik Sorensen, Victor Barzykin, Pascal Simon, <u>Rodrigo Pereira</u>, Nicolas Laflorencie, Bertrand Halperin

<u>Outline</u>

- Kondo effect and screening cloud
- Non-observation of screening cloud in conventional experiments
- Numerical results
- Possible experiments on mesoscopic systems
- Including Coulomb interactions

Kondo Effect & Screening Cloud

 a single impurity spin in a metal is described by the Kondo (or s-d) model:

$$H = \sum_{k\alpha} \psi_{\vec{k}\alpha} \psi_{\vec{k}\alpha} \varepsilon_k + J \vec{S}_{imp} \bullet \vec{S}_{el} (r = 0)$$

• here \vec{S}_{imp} is the impurity spin operator (S=1/2) and $\vec{S}_{el}(\vec{r})$ is the electron spin density at position $\vec{r}: \vec{S}_{el}(\vec{r}) \equiv \psi^+(\vec{r}) \frac{\vec{\sigma}}{2} \psi(\vec{r}), \psi(\vec{r}) \equiv \frac{1}{\sqrt{V}} \sum_k e^{i\vec{k}\cdot\vec{x}} \psi(\vec{k})$

(sum over spin indices implied)

• after expanding the electron field $\Psi(\vec{r})$ in spherical harmonics, keeping only the s-wave, and linearizing the dispersion relation we obtain a relativistic quantum field theory, defined on a 1/2-line with the impurity at the origin:

$$H = iv_F \int_0^\infty dx \left[\psi_L^+ \frac{d}{dx} \psi_L - \psi_R^+ \frac{d}{dx} \psi_R \right] + 2\pi v_F \lambda \, \vec{S}_{imp} \bullet \vec{S}_{el}(0)$$

$$\Phi_L(0) = -\psi_R(0)$$

- here λ is the dimensionless Kondo coupling, Jv, where v is the density of states
- Kondo physics is fundamentally 1-dimensional

 to study the problem at low energies, we may apply the renormalization group, integrating out high energy Fourier modes of the electron operators, reducing the band-width, D:

$$\frac{d\lambda}{d\ln D} \approx -\lambda^2 + \cdots$$
$$\lambda_{eff}(D) \approx \frac{\lambda_0}{1 - \lambda_0 \ln(D_0/D)} + \cdots$$

• effective coupling becomes O(1) at energy scale T_{κ} :

 $T_{K}=D_{0}exp(-1/\lambda_{0})$

(D₀ is of order the Fermi energy)

• effective Hamiltonian has wave-vector cutoff: $|k-k_F| < T_K/v_F = 1/\xi_K$

 this defines a characteristic *length scale* for the Kondo effect - typically around
 .1 to 1 micron

- $\lambda_{eff} \rightarrow \infty$ at low energies (<<T_K)
- strong coupling physics is easiest to understand in tight-binding model:

$$H = -t \sum_{j=0}^{\infty} (\psi_j^{+} \psi_{j+1} + \psi_{j+1}^{+} \psi_j) + J \vec{S}_{imp} \cdot \vec{S}_{el}(0)$$

- for J>>t, we simply find ground state of last term:
- 1 electron at j=0 forms spin singlet with impurity: $|\phi_0\rangle = (|\uparrow\downarrow\rangle > |\downarrow\downarrow\uparrow\rangle)/\sqrt{2}$
- other electrons are free except that they must not go to j=0 since they would break the singlet
- effectively an infinite repulsion at j=0, corresponding to $\pi/2$ phase shift

• for finite (small) λ_0 , this description only holds at low energies and small $|k-k_F|$

• only long wavelength probes see simple $\pi/2$ phase shift- local Fermi liquid theory

Non-Observation of Screening Cloud in Experiments

- the Knight shift as a function of distance from an impurity can be measured by NMR
- at T=0 this takes the form:

$$\chi(r) = \chi_0 + \frac{\cos(2k_F r)}{r^2} f\left(\frac{r}{\xi_K}\right) \frac{1}{\dot{\xi}}$$

 rapid oscillations and power-law pre-factor makes this difficult to observe (Boyce-Slichter, 1974)

Schematic sketch of scaling function

Numerical renormalization group confirmation: <0|S_{imp}(t)•S_{el}(x,t)|0>

<u>Possible Experiments on</u> <u>Mesoscopic Systems</u>

If conduction electrons are confined to a region of size L< ξ_K, Kondo effect is suppressed (at least in simplest models)

$$\lambda_{eff}(L) \approx \frac{\lambda_0}{1 - \lambda_0 \ln(L/a)} + \bullet \bullet \approx \frac{1}{\ln(\xi_K/L)}$$

finite system size cuts off infrared divergences of perturbation theory
Screening cloud doesn't "fit" into system One possibility is to consider a quantum wire coupled to a quantum dot which acts as a Kondo impurity

- •A gate voltage, V_G is applied to the wire while maintaining the dot in the Kondo regime
- •The wire also is very weakly coupled to an electron reservoir (not shown)
- •As V_G (or effectively, μ , the chemical potential)
- is varied at T=0, electrons enter or leave the wire in single steps
- •Ratios of plateau widths with odd or even electron number depends on L/ ξ_{K}
- Could be measured from transport experiment

 ignore, for now, any other interaction effects apart from Kondo interaction (see below) •at L<< $\xi_{\rm K}$, $\lambda_{\rm eff}$ is small and we get nearly free electron behaviour •for nearly all values of μ, N is odd •i.e. even number on wire, odd number on dot since single electron levels of wire are doubly occupied (or empty)

N odd

•As we increase L/ ξ_{K} , i.e. increase λ_{eff} , even N plateaus get wider •For L>> ξ_{κ} , we enter strong coupling regime •now N is even for almost all μ because one electron from wire forms singlet with the quantum dot spin while the rest doubly occupy single electron levels

- •We consider $R = \delta \mu^0 / \delta \mu^e$
- •At weak coupling, ξ_{K} >>L from perturbation theory:
- $R \approx 1/[(3/2)\lambda_{eff}] \approx (2/3) \ln (\xi_K/L) >>1$
- •At strong coupling, $\xi_K << L$ we can use local Fermi liquid theory: $R \approx (\pi \xi_K)/(4L) << 1$
- •In between, R is given by a universal scaling function of $\xi_{\rm K}/L$

•we calculated this using Bethe ansatz solution of Kondo problem at finite L

Cleaved overgrowth quantum wires Yacoby et al.

I~10 μ L~ μ's

3 or fewer channels

•Coulomb interaction screened (to $1/r^3$) by second nearby wire, a distance d away •Luttinger model seems to work • $v_c \sim 1.5v_F$, $v_s \sim v_F$, K~.7

Including Coulomb Interactions

- With Kondo impurity coupled <u>at end of</u> <u>wire</u>,
- $\begin{array}{l} \text{spin-charge-separation applies} \\ E(N+n) = \frac{1}{4KL}n^2 + \frac{1}{4L}f_s(\lambda,g,L) \mu n \end{array}$
- $\bullet V_{c/s}$ are charge/spin velocities
- •K is Luttinger parameter
- •f_s is dimensionless spin energy:
- s=1/2 or 0 for n even or odd
- •g is marginal coupling constant in spin sector, deriving from Coulomb interactions

•charge step ratio depends only on $f(\lambda,g,L)=f_{1/2}-f_0$ and $u=(v_sK/v_c)\sim.5$

$$R = \frac{1 + uf(\lambda, g, L)}{1 - uf(\lambda, g, L)}$$

- •Coulomb interactions lead to u<1- suppressing somewhat even-odd effect in charge steps
- •Spin-charge separation: $H=H_c+H_s$ •Only important interaction is in spin sector $H_s=H_0+H_{int}$

$$H_{\text{int}} = 2\pi v_s \left[-g \int_0^L dx \, \vec{J}_L \times \vec{J}_R + \lambda \, \vec{J}_L(0) \times \vec{S} \right]$$

•Coulomb interaction, g, is marginally *irrelevant*: g(L)~1/ln (L/a), L>>a, where a~1/k_F

•Kondo interaction, λ , is marginally *relevant*: $\lambda(L)\sim 1/\ln (\xi_{K}/L), L <<\xi_{K}$

•Coulomb interactions modifies $f(\xi_{K}/L)$ but effect gets weaker and weaker for larger L •non-interacting case discussed previously is: $R_{0} = \frac{1}{1 - f(0, \lambda, L)}$

some further reduction of even/odd effect from marginal interaction
goes away as L increases

Conclusions

- Physical quantities change at large length scale $\xi_{\rm K} {=} v_{\rm F} / T_{\rm K} \, {\leq} \, 1 \mu$, in ideal model
- This effect not yet seen experimentally
- Mesoscopic systems with L ~ $\xi_{\rm K}$ provide new possibilities
- Interactions modify situation somewhat

More Realistic Models

-more channels may couple to impurity -system may be disordered (eg. 1 magnetic impurity and many non-magnetic ones) -interactions among conduction electrons may be important -interactions between magnetic impurities (eg. RKKY) may be important

Including more channels:

- Thimm, Kroha & Van Delft (1999) considered a 3-dimensional disordered "box" (volume V) containing a single impurity spin
- They assumed:
- •All single electron states in box couple with equal strength to spin
- •Energy levels are equally spaced Δ \propto 1/V
- -Now suppression of Kondo effect occurs when $T_K \sim \Delta \rightarrow V \sim \xi_K a^2$ (a~1/k_F)
- -a much smaller system would be needed to see this effect

•In quantum wires with N channels, typically require L $\cong \xi_K$ /N to see screening cloud effects (P. Simon & IA, 2003) •This can make it much more difficult to see these effects

Friedel (charge) oscillations around a Kondo impurity

(with Laszlo Borda and Hubert Saleur)

$$\rho(r) - \rho_0 \rightarrow \frac{C_D}{r^D} [\sin(2k_F r + 2\delta_P)F(r/\xi_K) - \sin(2k_F r)]$$

