Exotic Transport Properties of Graphene and Nanotube

- 1. Weyl's equation for neutrino
- 2. Rise of graphene
 - Fabrication and quantum Hall effect
 - Landau-level spectroscopy
 - Local density of states
 - Optical phonon, Spin transport, ···
- 3. Transport in graphene and nanotube
 - Berry's phase & topological anomaly
 - Zero mode anomalies
 - Special time reversal symmetry
- 4. Multi-layer graphene
 - Hamiltonian decomposition

5. Summary

Clock Tower Centennial Hall Kyoto Univ, Nov 23 (Fri) 2007

Yukawa International Seminar 2007 on Interaction and Nanostructural Effects in Low-Dimensional Systems November 5-30, 2006 [15:15-16:00 (35+10)]

Tsuneya ANDO

Yukawa International Seminar 2007 (YKIS2007) Interaction and Nanostructural Effects in Low-Dimensional Systems Nov.5-30, 2007, Yukawa Institute for Theoretical Physics

 $\mathbf{k} \cdot \mathbf{p}$ scheme [H. Ajiki and T. Ando, JPSJ <u>62</u>, 1255 (1993)]

Fabrication of Monolayer Graphene on SiO₂/Si Substrate

KYOTO07.OHP (November 17, 2007)

Topological Anomaly and Berry's Phase

Zero-Mode Anomaly: Boltzmann Conductivity

• T. Ando, JPSJ <u>75</u>,

• K. Nomura & A.H.

MacDonald, PRL

<u>96, 256602 (2006)</u>

Minimum conductivity

Universal?

053707(2006)

2

H. Kumazaki & D.S.

Hirashima, JPSJ 75,

Page $2\overline{0}$

074716 (2006)

Special Time Reversal Symmetry and Universality Class

Real time reversal (K \leftrightarrow K'): $T = F_K^T = \sigma_z F_{K'}^*$, $F_{K'}^T = \sigma_z F_K^*$, $T^2 = 1$ Special time reversal (within K and K'): SΚ

$$P^{S} = K^{t} P K^{-1} \Rightarrow (F_{\alpha}^{S}, P^{S} F_{\beta}^{S}) = (F_{\beta}, P F_{\alpha})$$

Time reversal		Symmetry	Matrix
Real	$T^2 = +1$	Orthogonal	Real
Special	$S^2 \!=\! -1$	Symplectic	Quaternion
None		Unitary	Complex

$$\frac{\alpha}{\alpha}$$

Reflection coefficient: $r_{\bar{\beta}\alpha} = (F_{\bar{\beta}}, TF_{\alpha}) = (F_{\beta}^{S}, TF_{\alpha}) \Leftrightarrow r_{\bar{\alpha}\beta}$ **T matrix:** $T = V + V \frac{1}{E - \mathcal{H}_{0} + i0} V + V \frac{1}{E - \mathcal{H}_{0} + i0} V \frac{1}{E - \mathcal{H}_{0} + i0} V + \cdots$ **Real** : $r_{\bar{\alpha}\beta} = (\boldsymbol{F}_{\alpha}^T, T\boldsymbol{F}_{\beta}) = (\boldsymbol{F}_{\beta}^T, T(\boldsymbol{F}_{\alpha}^T)^T) = +(\boldsymbol{F}_{\beta}^T, T\boldsymbol{F}_{\alpha}) = +r_{\bar{\beta}\alpha}$ Special: $r_{\bar{\alpha}\beta} = (F^S_{\alpha}, TF_{\beta}) = (F^S_{\beta}, T(F^S_{\alpha})^S) = -(F^S_{\beta}, TF_{\alpha}) = -r_{\bar{\beta}\alpha}$ Absence of backward scattering: $r_{\bar{\alpha}\alpha} = 0$ (\Leftarrow Berry's phase) Presence of perfect channel (Odd channel numbers) Page 21

Metallic Nanotubes: Perfect Channel without Backscattering T. Ando and H. Suzuura, J. Phys. Soc. Jpn. <u>71</u>, 2753 (2002)

Symmetry Breaking Effects: Symplectic \Rightarrow Unitary

Trigonal warping (S) [H. Ajiki & T. Ando, or
$$JPSJ \underline{65}, 505 (1996)$$
]
 $\mathcal{H}' = \alpha \frac{\gamma a}{4\sqrt{3}} \begin{pmatrix} 0 & (\hat{k}_x + i\hat{k}_y)^2 \\ (\hat{k}_x - i\hat{k}_y)^2 & 0 \end{pmatrix}$ one $\alpha \approx 1$
Lattice distortion [H. Suzura & T. Ando, δ
 $PBB \underline{65}, 235412 (2002)$] δ
 $\mathcal{H}' = g_1(u_{xx} + u_{yy})$ -0.05
 $+g_2[(u_{xx} - u_{yy})\sigma_x - 2u_{xy}\sigma_y]$
Deformation potential : $g_1 \sim 16 \text{ eV}$ -0.10
Bond-length (b) change: $g_2 \approx \beta\gamma_0/4$ -0.15
 $\beta = -\frac{d \ln \gamma_0}{d \ln b}, \ \gamma = \frac{\sqrt{3}\gamma_0 a}{2}, \ b = \frac{\sqrt{3}a}{2}$ $a_{k_y}/2\pi$
 $u_{xx} = \frac{\partial u_x}{\partial x} + \frac{u_z}{R} \ u_{yy} = \frac{\partial u_y}{\partial y} \ u_{xy} = \frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right)$ $p = 1 - \frac{3}{8} \frac{\gamma'}{\gamma}$
Curvature: $\mathcal{H}' = p \frac{\gamma a}{4\sqrt{3}} \left[\left(\frac{\partial^2 u_z}{\partial x^2} - \frac{\partial^2 u_z}{\partial y^2} \right) \sigma_x - 2 \frac{\partial^2 u_z}{\partial x \partial y} \sigma_y \right]_{\gamma'} = \frac{\sqrt{3}}{2} (V_{pp}^{\sigma} - V_{pp}^{\pi}) a$
Optical phonon: $\mathcal{H}' = -\frac{\beta\gamma}{b^2} \sigma \times [u_A - u_B]$ [T. Ando, JPSJ 69, 1757 (2000)]
[E. Ishikawa & T. Ando, JPSJ 75, 084713 (2006)] [Page 23]

Theory: E. McCann et al., PRL <u>97</u>, 146805 (2006)

Bi-Layer Graphene

Quantum Hall effect in bilayer graphene

K.S. Novoselov et al., Nature <u>438</u>, 197 (2005)
K.S. Novoselov et al., Nat. Phys. <u>2</u>, 177 (2006)
ARPES [T. Ohta et al., PRL <u>98</u>, 206802 (2007)]
Effective Hamiltonian in bilayer graphene

$$\begin{aligned} \mathbf{A}_{1} & \mathbf{B}_{1} & \mathbf{A}_{2} & \mathbf{B}_{2} & \hat{k}_{\pm} = \hat{k}_{x} \pm i \hat{k}_{y} \\ & \begin{pmatrix} 0 & \gamma \hat{k}_{-} & 0 & 0 \\ \gamma \hat{k}_{+} & 0 & \Delta & 0 \\ 0 & \Delta & 0 & \gamma \hat{k}_{-} \\ 0 & 0 & \gamma \hat{k}_{+} & 0 \end{pmatrix} & \Delta = \gamma_{1} \\ & & \mathbf{A} = \gamma_{1} \\ & \bullet \mathbf{B} \\$$

E. McCann and V.I. Falko, PRL <u>96</u>, 086805 (2006)
M. Koshino and T. Ando, PRB <u>73</u>, 245403 (2006)

Fight-binding models

- S. Latil and L. Henrard, PRL <u>97</u>, 036803 (2006)
- F. Guinea et al., PRB <u>73</u>, 245426 (2006), ...

S.A. Safran, PRB 30, 421 (1984)]

Multi-Layer Graphene [M. Koshino & T. Ando, PRB <u>76</u>, 085425 (2007)]

Diamagnetic susceptibility

Summary: Exotic Transport Properties of Graphene and Nanotube

Collaborators

- 1. Weyl's equation for neutrino
- 2. Rise of graphene
 - Fabrication and quantum Hall effect
 - Landau-level spectroscopy
 - Local density of states
 - Optical phonon, Spin transport, ····
- 3. Transport in graphene and nanotube
 - Berry's phase & topological anomaly
 - Zero mode anomalies
 - Special time reversal symmetry
- 4. Multi-layer graphene
 - Hamiltonian decomposition

www.stat.phys.titech.ac.jp/ando/

www.stat.phys.titech.ac.jp/~ando/reprint/graphene/reprints.htm_[Page 27]

Titech)

H. Suzuura

(Hokkaido Univ)

