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Dynamical vertex approximation (DΓA)

DMFT: all (topological distinct) local diagram for Σ

Generalization: all local diagrams for n-particle fully irreducible vertex Γ

n = 1 → DMFT

n = 2 → DΓA: from 2-particle irreducible vertex Γ
construct Σ (local and non-local diagrams)

· · ·
n =∞ → exact solution

First step: restriction to ladder diagrams

Σ =

lines: non-local G

crosshatched: local irreducible vertex in spin/charge channels

ΓS,C(ν, ν′, ω) = χ−1
0,loc − χ−1

S,C

magnons, spin-fluctuations at (A)FM phase transition

Gij from DMFT



DΓA algorithm
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eq. of motion



DΓA algorithm (restriction to ph ladders)

GG
DMFT

i j i i

Γ impurity model
(ED, QMC ...)

Γ

DMFT

red

local ir. vertex from

nonlocal red. vertex

Σ
i j

eq. of motion

G
i i Dyson eq.G

i j

i i i i

i j k l 

DMFT calc.

particle−hole ladder



Results: 3D Hubbard model

H = −t
∑

〈i,j〉σ
c†iσcjσ + U

∑
i ni↑ni↓

cubic lattice, exact diagonalization as impurity solver
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Σ and A for k = (π/2, π/2, π/2) (on Fermi surface)
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Results: 2D Hubbard model (half-filling)
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Results: 2D Hubbard model (half-filling)
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Results: 2D Hubbard model (off half-filling)
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Results: 2D Hubbard model (off half-filling)
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Results: 1D Hubbard model Slezak, Jarrell, Maier, Deisz cond-mat/0603421
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2) Kinks — direct consequence of strong correlations

Kinks in SrVO3 Nekrasov et al. PRB’06



2) Kinks — direct consequence of strong correlations

Kinks in SrVO3 Nekrasov et al. PRB’06

experimentally observed Fujimori et al.’06

Kinks in strongly correlated electron systems

Yoshida (2005)
Ekaterinburg � Augsburg � Stuttgart collaboration,

Nekrasov (2004, 2006)

Renormalization of LDA-bands by self-energy

* 0.2 eVKinks at Origin of kinks in a purely electronic theory

with one type of electron ?

Byczuk, Kollar, Held, Yang, Nekrasov, Pruschke, DV; cond-mat 0609594
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2) Kinks — direct consequence of strong correlations

Kinks in SrVO3 Nekrasov et al. PRB’06

Kinks in the 3D Hubbard model
Byczuk, Kollar, KH, Yang, Nekrasov,
Pruschke, Vollhardt Nature Phys.’07

Kinks follow from 3-peak-structure
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ARPES: low-energy kinks in cuprates

Lanzara et al.’01

energy range ∼ 70 meV



ARPES: high-energy kinks in cuprates
Bi2201 at T = 30K (> Tc)

2

FIG. 1: (a) Raw ARPES spectrum, along (0, 0) to (π, π) direction, of non-superconducting overdoped Bi2201 at T = 30 K
while (b) and (c) represent its MDCs and EDCs respectively. (d) the raw data is normalized with angle-integrated EDC profile
for clearer view and the numbers 1-3 mark the wider band width, the high and low-energy anomalies respectively. Normalized
ARPES spectra are compared with LDA calculations as follows: (e) OP Bi2201 with Tc = 35K (T=45K), (f) OD Bi2201,
non-superconducting (T=30K), (g) OP Bi2212 with Tc = 96K (T = 110K, LDA from Ref.13) and (h) OD Bi2212 with Tc =
65K (T=76K). Inset in Fig. 1a shows the momentum space of the data. Note that the LDA bands in panel (h) are obtained
by rigidly shifting the bands in (g) to account for the correct doping level. It is not clear if feature B should be matched to the
top of the band structure in (e) or (f) at Γ; however, this uncertainty is not important for our argument which only requires a
relative shift in going from the OP to the OD case.

Bi2212 samples are optimally-doped of Tc = 92K and
overdoped of Tc = 65K. The F0234 samples are of Tc
= 60K. And, the LSCO samples has a wide range of
dopings: x = 0.03, 0.05, 0.063, 0.07, 0.075, 0.09, 0.12,
0.15, 0.22 and 0.3. The measurements were carried
out on beamline 10.0.1 at the ALS, using a Scienta
R4000 electron energy analyzer. This analyzer has the
advantage of a large-angle window which can cover the
band dispersion across the Brillouin zone as shown in
Fig. 1. We stress that the wide angle scan allowed
us to record above data without resorting to manual
symmetrization. The photon energies are 37, 40, 41,...,45
and 55 eV. The energy resolution between 12 and 20
meV was used for various measurements on different
samples, and the angular resolution is 0.3 degree. The
samples were cleaved in situ in vacuum with a base
pressure better than 4 × 10−11 torr. The samples were
measured both in normal and superconducting states.

LDA results here are based on full-potential well-
converged computations for the appropriate lattice struc-
tures, described in greater details in Ref.13 and15.

III. RESULTS

Fig. 1a shows the raw ARPES image of the strongly
overdoped Bi2201 sample while its raw momentum-
distribution-curves (MDC) and energy-distribution-
curves (EDC) are shown in Fig. 1b and c, respectively.
To see the band near the bottom more clearly, the raw
ARPES image is divided by its profile of angle-integrated
EDC16, as shown in Fig. 1d; this procedure will not
change the MDC-peak position at any given energy. We
also note that this renormalization procedure which is
used in Fig. 1d-h and Fig.2 is only for the purpose of
displaying the lower and higher energy features together
since otherwise the intensity at the higher-energy region
will be too high to have a reasonable displaying contrast.
The raw data without this renormalization procedure can
be seen in Fig. 1a-c and Fig. 6a-i.

As marked by numbers 1-3 in Fig. 1d, we will focus
on how our new data reveal the simultaneous presence of
three energy scales as follows.

Meevasana et al. cond-mat/0612541

energy range ∼ 0.3 eV



Connection to high-energy kinks
Yang, Held’07

2D Hubbard model; DMFT(QMC)

n=0.85, U =3, t=0.435, t′=−0.1, t′′=0.038, T =1/40 (eV)
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4

FIG. 3: (Color online). (a-h) Maps of the ARPES intensity in the momentum space at increasing energies for the Pb-Bi2212
sample. Data were taken in the second BZ and symmetrized according to the tetragonal symmetry. The color scale is normalized
independently for each cut. The white solid lines correspond to the tight binding fit and the dashed light blue diamond indicates
the characteristic geometry of the high energy anomaly. (i) Three dimensional plot of the ARPES intensity as a function of
energy and in-plane momentum. (j) Our proposed scenario for the high energy anomaly.

FIG. 4: (Color online). Second derivatives of ARPES inten-
sity maps along the nodal direction of Pb2212 (a) and SrCuO2

(b)[18]. Only negative values of second derivatives are shown,
to trace peaks but not dips. Sum of the second momentum-
derivative and the second energy-derivative is shown at each
point. (c,d) MDCs from EF (top curve) to 0.8eV and EDCs
from kF (top curve) to Γ for the the data in panel (a). The
MDCs and EDCs are vertically shifted for an easy view. The
blue dotted line and the black dashed line highlight the pro-
posed spinon and holon dispersions, respectively.

In conclusion, we have reported for the first time a
universal high energy anomaly in the ARPES spectra of
different families of high temperature superconductors,
identified by a sudden change in the dispersion of the
main spectral peak. This phenomenon is robust under
the change of doping, as well as chemical composition.
We conjecture that the high energy anomaly provides
the long-sort-after evidence of spin charge separation in
the high Tc compounds.

We would like to thank P. W. Anderson, A. Bansil, A.
Bianconi, C. Di Castro, C. Castellani, S. Chakraverty,
J.E. Hirsch, T. Egami, M. Jarrell, S. Kivelson, R.S.
Markiewicz, A. Macridin, V. Oganesyan, P. Phillips, A.
Perali and S. Sahrakorpi for useful discussions and A.
Bostwick and A.V. Fedorov for experimental help. This
work was supported by the Director, Office of Science,
Office of Basic Energy Sciences, Division of Materials Sci-
ences and Engineering, of the U.S. Department of Energy
under Contract No. DE-AC03-76SF00098, and by the
National Science Foundation through Grant No. DMR-
0349361. ALS is operated by the DOEs Office of BES,
Division of Materials Science, under Contract No. DE-
AC03-76SF00098.

∗ Electronic address: alanzara@lbl.gov
[1] F. C. Zhang, T. M. Rice, Phys. Rev. B 37, 3759 (1988).
[2] A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. of Mod.

Phys. 75, 473 (2003).
[3] J. C. Campuzano, M. R. Norman, M. Randeria, Physics

of Superconductors, Vol II (Springer, 2004).
[4] B. O. Wells, et al., Phys. Rev. B 40, 5259 (1989).
[5] G.-H. Gweon, et al., Nature 430, 187 (2004).
[6] A. G. Loeser, et al., Science 273, 325 (1996).
[7] H. Ding, et al., Nature 382, 51 (1996).
[8] S. H. Pan, et al., Nature 413, 282 (2001).
[9] T. R. Thurston, et al., Phys. Rev. B 40, 4585 (1989).

[10] P. A. Lee, N. Nagaosa, X.-G. Wen, cond-mat/0410445
(2004).

[11] F. Ronning, et al., Phys. Rev. B 71, 094518 (2005).
[12] H. Lin, S. Sahrakorpi, R. S. Markiewicz, A. Bansil, Phys.

Rev. Lett. 96, 097001 (2006).

Graf et al.’06



High-energy kinks in anti-nodal direction
Yang, Held’07
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Kinks more pronounced at higher doping
Yang, Held’07

Theory:
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FIG. 4: The doping dependence of high-energy dispersion (red circles) in LSCO system at T = 20K at doping x = 0.03 to 0.30.
LDA curves for various dopings (blue lines) are obtained by appropriate rigid shifts of the computations for x=0.

resent the real dispersion. Explained in appendix, a full
2D analysis, which directly extracts the spectral function,
A(k, ω) and matrix element term separately at once, can
avoid the problem of the MDC or EDC analysis alone.
However, since the kink-like structure is so large, the
MDC-derived dispersion should be able to approximately
identify the energy scale of the HEA. To check the 3 di-
mensional behavior of the band A and B, we perform the
measurements at various photon energies 40, 41, ..., 45
eV and 55 eV, probing different perpendicular momenta
kz. As shown in Figs. 2d, we find that HEA scale and the
top of Band B are not very sensitive to the photo energies
while as well these energy scales in our LDA calculations
do not show strong kz dependence.

This HEA is present in various cuprate families. While
earlier seen in undoped CCOC18, the MDC-peak-position
graphs of Bi2201, Bi2212, LSCO and F0234 plotted
in Fig. 3, reveal its universality. The energy scales
are around 0.3-0.4 eV in Bi2201, Bi2212 and LSCO
while around 0.5-0.6 eV in F0234 (for electron-doped
band). HEA persists in both superconducting and non-
superconducting samples, albeit its strength depends on
doping. Fig. 4 shows the plots of MDC-peak position of
LSCO samples which cover a wide doping range, x = 0.03
to 0.30. From the figure, the HEA energy does not change
much with doping. However, if we define the size of
HEA to be the difference between the MDC-derived and
LDA dispersion, it increases upon doping in this range.
Similar doping-dependent behavior is also observed in
Bi2201 and Bi2212 samples which cover a narrower range
of doping. For superconducting samples, the HEA per-
sists above and below Tc. consistent with ARPES data,
from in-plane optical conductivity of Bi221219, Norman
and Chubukov recently report that the real part of the
self-energy is large with a maximum value around 0.3-0.4

eV20.

C. low energy ”kink” of 0.03-0.09eV

Finally, the low energy ”kink” (LEK) around 0.03-0.09
eV is indicated with arrows in Fig. 2d, and upper arrows
in Fig. 4 and Fig. 5a. Since this feature has been already
discussed with regard to the interaction of electron to
sharp bosonic mode(s)2,3,4,5,6,7,8,9,10, we will not go into
the details of this feature, except commenting upon its
interesting doping dependence. For LEK, the size of this
feature, which is interpreted as strength of electron-boson
coupling, reduces upon doping in LSCO9 and Bi220110

while the size of HEA defined previously increases upon
doping. It is then intriguing to ask whether an interplay
of these two scales of low and high-energy anomalies will
affect our understanding of the doping dependent effects
seen in cuprates.

IV. DISCUSSION

The presence of three energy scales in the same data
set hints at the hierarchy of interactions that are im-
portant to the dynamics of electrons in cuprates. Aside
from LEK which we believe is caused by electron-phonon
interaction6,8,9,10, HEA and the expanded band width
are new observations that require more discussion.

To gain more insights into the nature of the energy
scales observed, Fig. 5 compares the data of the super-
conducting (SC) sample, OP Bi2201, with that of the an-
tiferromagnetic (AF) parent compound CCOC and ferro-
magnetic (FM) La1.2Sr1.8Mn2O7 (LSMO). Comparison
of LSMO and cuprates may give us some insight since

Meevasana et al.’06



Conclusion — DΓA

• DΓA assumption: local 2-particle irreducible Γ
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• DΓA can access short- and long-range correlations

• Pseudogap in 2D; Mott transition in 3D

Outlook

• Physics: magnons, interplay between AFM and superconductivity, QCP

• Realistic multi-orbital calculations possible



Conclusion – kinks

• Kinks direct consequence of strong correlations

→ kinks are everywhere (three peak structure)

• Fermi-liquid regime: Ek = ZFLεk for |Ek| < ω∗

Beyond Fermi-liquid regime: Ek = ZCPεk ± c for |Ek| > ω∗

• Connection to high-energy kinks/waterfalls in cuprates


