Dynamical vertex approximation –

a step beyond dynamical mean field theory

K. HeldMPI-FKF Stuttgart \rightarrow TU Vienna, as of March 2008YKIS, Nov 26, 2007

1) Dynamical vertex approximation

- Motivation
- Method
- Results for 3D, 2D, and 1D Hubbard model

2) Kinks in the dispersion relation of correlated electrons

Dynamical vertex approximation –

a step beyond dynamical mean field theory

K. Held MPI-FKF Stuttgart \rightarrow TU Vienna, as of March 2008 *YKIS, Nov 26, 2007*

1) Dynamical vertex approximation (D Γ A)

- Motivation
- Method
- Results for 3D, 2D, and 1D Hubbard model

2) Kinks in the dispersion relation of correlated electrons

Thanks to...

1) Dynamical vertex approximation (D Γ A)

A. Toschi, A. Katanin – MPI-FKF Stuttgart

PRB 75, 045118 (2007)

2) Kinks

Y.-F. Yang – MPI-FKF Stuttgart

K. Byczuk, M. Kollar, D. Vollhardt – Augsburg

I. A. Nekrasov – Ekaterinburg

Th. Pruschke – Göttingen

PRB 73, 155112 (2006)

Nature Physics 3 168 (2007)

Motivation

Dynamical mean field theory

(Metzner, Vollhardt'89; Georges, Kotliar'92)

 $\boldsymbol{\Sigma}$ all topologically distinct, but local diagrams

Success story: quasiparticle renormalizations, magnetism, kinks ...

Motivation

Dynamical mean field theory

(Metzner, Vollhardt'89; Georges, Kotliar'92)

 Σ all topologically distinct, but local diagrams

Success story: quasiparticle renormalizations, magnetism, kinks ...

Motivation

Dynamical mean field theory

(Metzner, Vollhardt'89; Georges, Kotliar'92)

 $\boldsymbol{\Sigma}$ all topologically distinct, but local diagrams

Success story: quasiparticle renormalizations, magnetism, kinks ...

Not included:

non-local correlations

 $\ensuremath{\textit{p}}\xspace$, $\ensuremath{\textit{d}}\xspace$, wave superconductivity, spin Peierls

magnons, (quantum) critical behavior ...

k-dependence of Σ

cluster extensions of DMFT

- non-local short-range correlations
- $\bullet~d/p\mbox{-wave}$ superconductivity

Hettler *et al.*'98, Lichtenstein Katsnelson'00, Kotliar *et al.*'01, Potthoff'03 diagrammatic extensions of DMFT

dynamical vertex approximation

- non-local long-range correlations
- (para-)magnons, phase transitions ...

Toschi, Katanin, KH cond-mat/0603100 cf. Kusunose cond-mat/0602451 Slezak *et al.* cond-mat/0603421

DMFT: all (topological distinct) local diagram for Σ

Generalization: all local diagrams for n-particle fully irreducible vertex Γ

DMFT: all (topological distinct) local diagram for Σ

Generalization: all local diagrams for n-particle fully irreducible vertex Γ

 $n = 1 \rightarrow \mathsf{DMFT}$

DMFT: all (topological distinct) local diagram for Σ

Generalization: all local diagrams for n-particle fully irreducible vertex Γ

 $n = 1 \rightarrow \text{DMFT}$ $n = 2 \rightarrow \text{D}\Gamma\text{A}$: from 2-particle irreducible vertex Γ construct Σ (local and non-local diagrams)

DMFT: all (topological distinct) local diagram for Σ

Generalization: all local diagrams for n-particle fully irreducible vertex Γ

DMFT: all (topological distinct) local diagram for Σ

Generalization: all local diagrams for n-particle fully irreducible vertex Γ

local Γ , non-local G

 $\stackrel{\longrightarrow}{\text{non-local reducible vertex }} \Gamma_{red}$ via parquet equations

DMFT: all (topological distinct) local diagram for Σ

Generalization: all local diagrams for n-particle fully irreducible vertex Γ

local Γ , non-local G \rightarrow non-local reducible vertex Γ_{red} via parquet equations

$\begin{array}{l} \Gamma_{red} \\ \rightarrow \\ \textbf{non-local } \Sigma \\ exact relation (eq. of motion) \end{array}$

DMFT: all (topological distinct) local diagram for Σ

Generalization: all local diagrams for n-particle fully irreducible vertex Γ

local Γ , non-local G

 $\stackrel{\longrightarrow}{\text{non-local reducible vertex }} \Gamma_{red}$ via parquet equations

DMFT: all (topological distinct) local diagram for Σ

Generalization: all local diagrams for n-particle fully irreducible vertex Γ

local Γ , non-local G

 $\stackrel{\longrightarrow}{\text{non-local reducible vertex }} \Gamma_{red}$ via parquet equations

DMFT: all (topological distinct) local diagram for Σ

Generalization: all local diagrams for n-particle fully irreducible vertex Γ

First step: restriction to ladder diagrams

lines: non-local G

crosshatched: local irreducible vertex in spin/charge channels

$$\Gamma_{\rm S,C}(\nu,\nu',\omega) = \chi_{0,{
m loc}}^{-1} - \chi_{
m S,C}^{-1}$$

magnons, spin-fluctuations at (A)FM phase transition G_{ij} from DMFT

$\textbf{D} \Gamma \textbf{A}$ algorithm

D Γ **A** algorithm (restriction to ph ladders)

$$H = -t \sum_{\langle i,j \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

cubic lattice, exact diagonalization as impurity solver

 $\Gamma_{\rm s,ir}(\nu,\nu',\omega)$ strongly frequency dependent

Results: 2D Hubbard model (half-filling)

anisotropic pseudogap

Results: 2D Hubbard model (half-filling)

nodal

antinodal

Results: 2D Hubbard model (off half-filling)

$$t'/t = 0.3$$

 $n = 0.8$
 $\beta = 100/D$
less anisotropic
at strong coupling

Results: 2D Hubbard model (off half-filling)

less anisotropic at larger doping

Slezak, Jarrell, Maier, Deisz cond-mat/0603421

Here, only 2nd order diagrams for vertex $(q = 0, \omega = 0)$ but 8-site DCA for short-range Σ

experimentally observed Fujimori et al.'06

Kinks in the 3D Hubbard model Byczuk, Kollar, KH, Yang, Nekrasov, Pruschke, Vollhardt Nature Phys.'07

Kinks in the 3D Hubbard model Byczuk, Kollar, KH, Yang, Nekrasov, Pruschke, Vollhardt Nature Phys.'07

Kinks follow from 3-peak-structure

 $\Sigma(\omega) = \omega + \mu - 1/G(\omega) - \Delta(G(\omega))$

Fermi-liquid regime: $E_{\mathbf{k}} = Z_{\mathrm{FL}}\epsilon_{\mathbf{k}}$ for $|E_{\mathbf{k}}| < \omega_*$ Beyond FL regime: $E_{\mathbf{k}} = Z_{\mathrm{CP}}\epsilon_{\mathbf{k}} \pm c$ for $|E_{\mathbf{k}}| > \omega_*$

ARPES: low-energy kinks in cuprates

Lanzara et al.'01

energy range \sim 70 meV

ARPES: high-energy kinks in cuprates Bi2201 at T = 30K (> T_c)

Meevasana *et al.* cond-mat/0612541

energy range \sim 0.3 eV

Connection to high-energy kinks

Yang, Held'07

2D Hubbard model; DMFT(QMC)

n = 0.85, U = 3, t = 0.435, t' = -0.1, t'' = 0.038, T = 1/40 (eV)

Connection to high-energy kinks

Yang, Held'07

2D Hubbard model; DMFT(QMC)

n = 0.85, U = 3, t = 0.435, t' = -0.1, t'' = 0.038, T = 1/40 (eV)

Graf et al.'06

cf. Macridin et al.'07

cf. Byczuk, Kollar, Vollhardt'07

Kink position correct but two features kink+waterfall

High-energy kinks in anti-nodal direction

0 -0.2 -0.4 -0.6 -0.8 w (eV) -1 -1.2 -1.4 -1.6 -1.8 -2 0.2 0.4 0.6 -0.8 -0.6 -0.4 -0.2 0.8 -1 0 1 (0,-pi)--(0,0)--(0,pi)

Yang, Held'07

4 3.5

3

2.5 2

1.5

1

0.5

0

Inosov et al.'07

Kinks more pronounced at higher doping

Yang, Held'07

Experiment:

Meevasana et al.'06

Conclusion — $D\Gamma A$

• DTA assumption: local 2-particle irreducible Γ

- $D\Gamma A$ can access short- and long-range correlations
- Pseudogap in 2D; Mott transition in 3D

Outlook

- Physics: magnons, interplay between AFM and superconductivity, QCP
- Realistic multi-orbital calculations possible

Conclusion – kinks

- Kinks direct consequence of strong correlations
 - \rightarrow kinks are everywhere (three peak structure)
- Fermi-liquid regime: $E_{\mathbf{k}} = Z_{FL}\epsilon_{\mathbf{k}}$ for $|E_{\mathbf{k}}| < \omega_*$

Beyond Fermi-liquid regime: $E_{\mathbf{k}} = Z_{\mathbf{CP}}\epsilon_{\mathbf{k}} \pm c$ for $|E_{\mathbf{k}}| > \omega_*$

• Connection to high-energy kinks/waterfalls in cuprates