Yukawa International Seminar 2007 (YKIS2007) "Interaction and Nanostructural Effects in Low-Dimensional Systems", Nov. 5-30, 2007, Kyoto University, Kyoto

Strongly Correlated Electrons on Frustrated Lattices

(ISSP, Univ of Tokyo)

Hirokazu Tsunetsugu

collab./w(Osaka Univ.)Takuma Ohashi(Kyoto Univ.)Norio Kawakami(RIKEN)Tsutomu Momoi

sponsored by the MEXT of Japan:

a Grant-in-Aid for Scientific Research (Nos. 17071011 and 19052003)
the Next Generation Super Computing Project, Nanoscience Program

OUTLINE

- Correlated electron systems with geometrical frustration
- [A] Kagomé Lattice Hubbard model
 - exotic spin correlation near metal-insulator transition
- [B] Anisotropic Triangular Lattice Hubbard Model
 - entropy and frustration effects
 - heavy quasiparticle formation and metal-insulator transition
- [C] Trimer phase of bilinear-biquadratic zigzag chain
 - antiferro spin nematic correlation

Correlated electron systems with geometrical frustration

Pyrochlore

Classical: Many states are degenerate in low-energy sector. Quantum effects hybridize these states -> new phase/correlations?

Many interesting systems:•Superconductivity $Na_xCoO_2 \cdot yH_2O$, AOs_2O_6 •Heavy Fermion LiV_2O_4 , etc

•Quantum spin liquid κ -(ÉT)₂Cu₂(CN)₃

PART A

Mott Transition in Kagomé Lattice Hubbard Model

[Ohashi, Kawakami, and Tsunetsugu, Phys. Rev. Lett. 97 ('06) 066401]

Kagomé Lattice Hubbard Model

$$H = -t \sum_{\langle i,j \rangle,\sigma} c^{+}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

- Typical frustrated lattice in 2D (thermodynamically degenerate ground states of AF Ising spins)
- 2D analog of pyrochlore lattice
- Effective model of Na_xCoO₂ yH₂O Koshibae & Maekawa PRL 91, 257003 (2003) Bulut, Koshibae, & Maekawa PRL 95, 37001 (2005)
- Spin systems on Kagomé lattice
 ⇒ unusual properties (gapped triplet, gapless singlet excitations)

Relation btw charge fluctuations and spin correlations Effects on quasiparticle coherence [fix density at half filling n=1]

Method

Metal-insulator transition in Kagomé lattice at half filling

- strong correlation
- geometrical frustration
- short-range quantum fluctuations ⇒ DMFT

Cellular dynamical mean field theory (CDMFT)

Kotliar, et al. PRL 87, (2001) Lichtenstein & Katsnelson, PRB 62, (2000)

DMFT

...

Vollhardt Muller-Hartmann Kotliar Georges Jarrell

. . .

Self-energy: 3x3 matrix
$$\sum_{ij} (\omega)$$

- Spatially extended correlation
- Geometrical frustration

model

Mott transition

square lattice: $U_c \sim 0.5-1.0$ Larger critical value U_c

Crossover

Define metal-insulator crossover points $U^*(T)$ by largest change in double occupancy

Phase diagram

Mott transition in Kagome Hubbard model

Charge susceptibility

Charge response grows once again in low-T metallic region

Density of States: U/W=1.1

Density of States: U/W=1.3

Density of States: *U*/*W*=1.5

Density of states

- Whole bands are renormalized
- Heavy quasiparticles

Insulator: $U_c/W \sim 1.37$

Local spin susceptibility

1-site DMFT: Free spins in insulating phase

cluster DMFT: Spins are screened/correlated

Spin correlation function

Nearest-neighbor spin correlation $\langle S_i^z S_{i+1}^z \rangle$

Temperature Dependence of Spin Correlations

Characteristic for frustrated systems near MIT

- recovery of coherence
- relax frustration

Dynamical Susceptibility near Mott Transition

Imaginary part of local susceptibility

$$\chi_{loc}(\omega) = -i \int \left\langle \left[S_i^z(t), S_i^z(0) \right] \right\rangle e^{-it\omega} dt$$

metal ⇒ insulator Double peak

Metallic phase: Renormalized single peak

Suppressed Magnetic Instability

Mott transition : $U_c/W \sim 1.35$

Wavevector dependence of dominant mode

temperature: T/W=1/30

Spin correlations in the real space

Self Energy of Single-Particle Green's Fn.

D=6t =W

Quasiparticle Renormalization Factor

Summary (1)

Kagome lattice Hubbard model

Cellular dynamical mean field theory

- Metal-insulator transition
 - 1st order transition : $U_c/W \sim 1.37$
- Strongly correlated metal
 - Whole bands are renormalized
 - large mass enhancement
 - nonmonotonic temperature dependence of spin correlation functions
- Magnetic instability
 - one-dimensional spin correlations

PART B

Mott Transition in Anisotropic Triangular-Lattice Hubbard Model

Phase Boundary TopologyHeavy Quasiparticles

[Ohashi, Momoi, Tsunetsugu, and Kawakami, cond-mat.st-el/0709.1700]

Mott transition in κ -type organic materials

STRONG frustration nearly perfect regular triangle

$\kappa - (ET)_2 - Cu_2(CN)_3$

Y. Kurosaki et al., PRL 95, 177001 (2005)

INTERMED. frustration distorted towards square

κ -(ET)₂-Cu[N(CN)₂]Cl

F. Kagawa et al., PRB 69, 064511 (2004) 50 crossover 40 30 PI metal T (K) 20 AFI 10 0 15 25 35 45 5 P (MPa)

Reentrant !!

Mott transition line in Phase Diagram

Mott transition at finite temperature

Onoda & Imada, PRB 67, 161102 (2003)

Moukouri & Jarrell PRL 87, 167010 (2001)

Parcollet et al., PRL 92, 226402 (2004)

Anisotropic Triangular Lattice Model

t-t'-U Hubbard model

effective cluster model

anisotropic triangular lattice

- t'/t=0: regular square
 t'/t=1: regular triangular

t'/t controls frustration

 κ -(BEDT-TTF)₂-Cu₂(CN)₃ t'/t ~ 1

κ⁻(BEDT-TTF)₂-Cu[N(CN)₂]Cl t'/t ~ 0.8

Temperature-Dependence of Double Occupancy Insulator-Metal-Insulator Transition? Repulsion Ut = 80.07 • large *t*-strong GF: *t1t*=0.8 insulating nonmonotonic T-dep. insulating metallic *t1t*=0.7 0.06 *t1t*=0.6 small *t*-weak GF: insulating almost monotonic *t1t*=0.5 0.05 insulating 0.20.6 0.4 0.8 ()

Tt

Electron Spectral Function

Local Spectral Function – single site DMFT

Mott transition is driven by transfer of spectral weight between high-energy Mott band and low-energy quasiparticle band

[Zhang, Rosenberg, and Kotliar, PRL, 1993]

Mott Transition

Crossover at a higher temperature

Electron Spectral Function $A_k(\omega)$: high-T insulating phase

Electron Spectral Function $A_k(\omega)$: intermediate-T metallic phase

Electron Spectral Function $A_k(\omega)$: low-T insulating phase

Magnetic susceptibility for different t' at T/t=0.2

Density of States for different t' at T/t=0.2

DOS on the triangular lattice (t'/t=1.0)

Frustrated system: Mott transition is NOT masked paramagnetic insulator phase

Comparison with ∞–dim frustrated stsytems

DMFT: frustrated Bethe lattice

Zitzler et al. PRL 93 016406 (2004)

effects of short-range fluctuations
U_c-curve changes its direction

nonmagnetic insulating phase

Comparison with Organic Materials

Cellular-DMFT

• magnetic order at T>0

stabilized by weak 3-dimensionality

Summary (2)

Anisotropic Triangular Lattice Hubbard model (mainly t'/t=0.8) Cellular dynamical mean field theory

- Metal-insulator transition
 - different slope of transition line from unfrustrated systems
 entropy effects
- Intermediate Correlation Regime:
 - "reentrant" insulator \rightarrow metal \rightarrow insulator transition
 - heavy quasiparticle formation in the intermediate metallic phase
 - gap formation inside heavy qp band
- Magnetic instability
 - transition to paramagnetic insulator phase
 - magnetic phase appears at lower temperature

PART C

Trimer Phase of bilinear-biquadratic zigzag chain

collab. with Philippe Corboz (ETH Zurich) Andreas Läuchli (EPF Lausanne) Keisuke Totsuka (YITP, Kyoto U.)

[Corboz, Lauchli, Totsuka and Tsunetsugu, cond-mat.st-el/0707.1195 in press in Phys. Rev. B]

3-sublattice Antiferro Nematic Order

[Tsunetsugu and Arikawa, JPSJ 75, 083701 (2006)]

NiGa₂S₄ - structure

- S=1 spin system (Ni²⁺)
- Quasi-2D triangular structure

Ref: Nakatsuji et al., Science **309**, 1697 ('05)

NO orbital degrees of freedom

NiGa₂S₄: spin liquid behavior

Nakatsuji et al., Science **309**, 1697 ('05)

- No phase transition down to 0.35[K]
- C(T)∝T²
 -> presence of gapless excitations
- Finite χ≈8x10⁻³[emu/mole] at T≈0
- Finite ξ≈25[Å] at T≈0
- Spatial modulation in spin correlations Q≈(1/6,1/6,0)

Difficulty of Ordinary Scenarios

[A] magnetic LRO with $T_c < 0.3K$

- T = 0: magnetic LRO (eg, 120-degree structure)
- T > 0: paramagnetic (Mermin-Wagner)

```
Solution consistent:
no singularity in C(T) and \chi(T)
```

Solution NOT consistent: non-divergent ξ (T) neutron scattering

[B] spin gap state

(a)gap(S=1 excitations) > 0 gap(S=0 excitations) > 0 (eg. Haldane chain, Shastry-Sutherland system $SrCu_2(BO_3)_2$)

(b)gap(S=1 excitations) > 0 gap(S=0 excitations) = 0 (eg. S=1/2 Kagome)

@consistent: non-divergent ξ(T)

NOT consistent:
(a) : $C(T) \propto T^2$ (b) : $\chi(T \rightarrow 0) = finite$

Possibility of Unconventional Order

 Hidden non-"magnetic" order? Antiferro order of spin quadrupoles
 spontaneous breaking of spin rotation symmetry
 spin inversion sym. is NOT broken

Blume, Chen&Levy... Non-magnetic order: $\langle S \rangle = 0$ Order parameter: $Q_{\mu\nu} = \frac{1}{2} \langle S_{\mu}S_{\nu} + S_{\nu}S_{\mu} \rangle - \frac{1}{3} \delta_{\mu\nu} S(S+1)$

anisotropy of spin fluctuations

Phenomenological Model

low-energy effective model

$$H = J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + K \sum_{\langle i,j \rangle} (\mathbf{S}_i \cdot \mathbf{S}_j)^2$$

Biquadratic term

(cf. 4th order of hopping process)

$$(\mathbf{S}_{l} \cdot \mathbf{S}_{j})^{2} = \sum_{\mu\nu} (S_{l}^{\mu} S_{l}^{\nu}) (S_{j}^{\mu} S_{j}^{\nu})$$
$$= \frac{1}{4} \sum_{\mu\nu} Q_{l}^{\mu\nu} Q_{j}^{\mu\nu} - \frac{1}{2} \mathbf{S}_{l} \cdot \mathbf{S}_{j}$$
$$= \frac{1}{4} (\mathbf{n}_{l} \cdot \mathbf{n}_{j})^{2} - \frac{1}{2} \mathbf{S}_{l} \cdot \mathbf{S}_{j}$$

quadrupole couplings

Chen & Levy ('71) Matveev ('74) Andreev & Grishchuk ('84) Fath & Solyom ('95) Schollwock, Jolicoeur & Garel ('96) Harada & Kawashima ('02) Lauchli, Schmidt & Trebst ('03)

Bilinear-Biquadratic model

Antiferro Nematic Order

- 3-sublattice order magnetic quadrupoles
- K>0
 0<J<K

order parameter $\langle 2S_3^2 - S_1^2 - S_2^2 \rangle$

sublattice dependent principal axes

1D Analog of 3-sublattice Nematic Order?

Model

S=1 bilinear-biquadratic (BLBQ) zigzag chain:

$$H = \sum_{\langle i,j \rangle}^{1 \text{st},2 \text{nd}} J_{ij} \left[\cos \theta \mathbf{S}_i \cdot \mathbf{S}_j + \sin \theta \left(\mathbf{S}_i \cdot \mathbf{S}_j \right)^2 \right]$$

$$J_{ij} = \begin{cases} J_1 & \text{inter-chain} \\ J_2 & \text{intra-chain} \end{cases}$$

$$Heisenberg_{\text{zigzag chain}} \\ Heisenberg_{\text{zigzag chain}} \\ 1 \\ 0 \\ \pi/4 \\ \pi/2 \\ 1 \\ \text{BLBQ simple chain} \end{cases}$$

Phase Diagram (S=1 BLBQ zigzag spin chain)

RG Flow

liquid \leftrightarrow trimerized: liquid \leftrightarrow Haldane: Kosterlitz-Thouless tr

trimerized ↔ Haldane: 1st order [Itoi and Kato, PRB, 1997, Totsuka and Lecheminant 2007]

Summary

S=1 BLBQ zigzag spin chain

•Existence of trimerized phase

•Order of transitions

•Reentrant transition to liquid phase in the large-J2 regionat SU(3) sym. line

